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Abstract 
 

Increasing demand for Full High-Definition (FHD) video and Ultra High-Definition (UHD) 

video services has led to active research on high speed video processing. Widespread 

deployment of multi-core systems has accelerated studies on high resolution video processing 

based on parallelization of multimedia software. Even if parallelization of a specific decoding 

step may improve decoding performance partially, such partial parallelization may not result 

in sufficient performance improvement. Particularly, entropy decoding has often been 

considered separately from other decoding steps since the entropy decoding step could not be 

parallelized easily. In this paper, we propose a parallelization technique called Integrated 

Multi-Threaded Parallelization (IMTP) which takes parallelization of the entropy decoding 

step, with other decoding steps, into consideration in an integrated fashion. We used the 

Simultaneous Multi-Threading (SMT) technique with appropriate thread scheduling 

techniques to achieve the best performance for the entire decoding step. The speedup of the 

proposed IMTP method is up to 3.35 times faster with respect to the entire decoding time over 

a conventional decoding technique for H.264/AVC videos. 
 

 

Keywords: H.264/AVC, video decoder, multi-core systems, parallel processing 



2480               Hong et al.: A Parallelization Technique with Integrated Multi-Threading for Video Decoding on Multi-core Systems 

1. Introduction 

Demand for high resolution video processing techniques is rapidly increasing as 

high-definition digital broadcasting services are widely provided. Therefore, standards and 

techniques for video compression and decoding are being actively developed. One of the most 

popular video codec standards is H.264/AVC. One of the merits of H.264/AVC is that it is 

capable of providing good video quality at substantially lower bit rates than previous standards. 

However, it is very challenging to achieve high performance by a software implementation 

because decoding is very complex.  

The Joint Collaborative Team on Video Coding (JCT-VC) is currently developing the next 

generation of video coding standards called High Efficiency Video Coding (HEVC), which 

are targeted to the next-generation high definition televisions [1]. It is expected to deliver 50% 

better coding efficiency than H.264/AVC, while the decoding complexity will be much higher.  

Recently, enhancing performance through intelligent parallel processors with multiple 

cores integrated on a single chip has been attempted. Since a multi-core system typically has 

better power efficiency than a single core system with comparable processing power, many 

high performance embedded mobile systems are adopting multi-core system-on-chip (SoC) 

platforms. Even though multi-core systems may provide potentially ample computation power, 

it is not straightforward to achieve a high performance because efficient parallel programming 

for a multi-core system is difficult. Thus, it is crucial to design software which is more suitable 

for parallel processing.  

Parallelization of video decoding has been studied actively. Data-level parallelism is to 

divide a block of data into multiple sub-blocks, so they can be processed by multiple cores in 

parallel. Data-level parallelism should be processed without violating complicated data 

dependencies in a video decoding algorithm. One of the most popular data-level 

parallelization methods is 2D-Wave [2]. A video decoder could be parallelized to speed up the 

decoding with 2D-Wave, except for the entropy decoding stage. In fact, entropy decoding 

often becomes a performance bottleneck since processing cannot be parallelized in a 

straightforward manner. Among several entropy coding methods, when a high profile video 

service is required, Context Adaptive Binary Arithmetic Coding (CABAC) is most preferred 

because CABAC achieves a better compression efficiency. However, CABAC takes more 

time since it is complex. Recently, to resolve this concern, Multi-Threaded Syntax Element 

Partitioning (MT-SEP), which showed good coding efficiency and excellent performance 

through parallelization, was proposed [3]. It is expected that Ultra High-Definition (UHD) 

videos, which include 4K (3840 x 2160 pixels) and 8K (7680 x 4320 pixels) resolutions and 

require more than 12 Gbps of bandwidth, will be commercialized in the near future. Therefore, 

there is strong motivation for studies on highly parallelized decoding techniques on multi-core 

systems.  

 Even though techniques such as 2D-Wave and MT-SEP show good performance through 

parallelization, these methods are applied only on some specific steps of the H.264/AVC 

decoding. Therefore, it is not clear whether the overall decoding performance will be 

sufficiently improved by applying these techniques individually. Therefore, in this paper, we 

propose a novel method called Integrated Multi-Threaded Parallelization (IMTP), which takes 

parallelization of the entire decoding process into consideration in an integrated fashion. We 

implemented IMTP on an Intel i7 multi-core system, and conducted experiments with many 
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benchmark programs to verify performance enhancement. Multi-threading techniques were 

flexibly and effectively applied to every decoding step of the H.264/AVC decoding to achieve 

excellent performance. 

 The remainder of this paper is organized as follows. In Section 2, the steps for decoding 

H.264/AVC are described. Also, we briefly explain two closely related works: 2D-Wave and 

MT-SEP. In Section 3, the proposed method called IMTP is addressed. The experimental 

environment and results are presented in Section 4. Conclusions and future works follow in the 

last section. 

2. Related Work 

2.1  H.264/AVC Decoder 

H.264/AVC is a video compression standard proposed by ISO/IEC and ITU. Its compression 

ratio is high and it is adequate for video streaming through networks. Detailed specifications 

of the H.264/AVC standard are found in the ITU H.264 standard [4] and the ISO 

MPEG-4/AVC standard [5]. The H.264/AVC decoding consists of entropy decoding, inverse 

discrete cosine transformation, inverse quantization, intra prediction, motion compensation, 

and utilization of a deblocking filter. A brief explanation of these steps is given as follows: 

2.1.1. Entropy Decoding (ED) 

A bit stream in H.264/AVC is received as a unit of discrete packets, called a “Network 

Abstraction Layer (NAL) unit”, and an entropy decoder generates a set of coefficients. There 

are two popular entropy coding methods: Context Adaptive Binary Arithmetic Coding 

(CABAC) and Context-Adaptive Variable Length Coding (CAVLC). When the high profile 

video service is required, CABAC is preferred over CAVLC because CABAC achieves better 

compression efficiency. A good detailed explanation of CABAC and CAVLC may be found in 

[6] and [7], respectively.  

2.1.2. Inverse Quantization (IQ)/Inverse Transformation (IT) 

Inverse Transformation (IT) and Inverse Quantization (IQ) steps process the set of coefficients, 

which were generated by the entropy decoding, to generate a set of residual data.  

2.1.3. Intra Prediction (IP) and Motion Compensation (MC) 

Intra Prediction (IP) explores spatial redundancy among neighboring blocks within a frame 

while Motion Compensation (MC) explores temporal redundancy between successive frames. 

According to the type of macroblock, either IP or MC is applied. Residual data from IT and IQ 

are combined with the generated block after IP and MC steps. 

2.1.4. Deblocking Filter (DF) 

A Deblocking Filter (DF) is used to adaptively control weights to avoid a blocking effect, 

which reveals the boundary between blocks in the resulting decoded video.   

2.2. Parallelization of Video Decoding 

2.2.1. Data-Level Parallelization for Video Decoding 

Parallelization of H.264/AVC decoding depending on the size of the video data has been 

studied actively. Data parallelism divides a block of data into multiple sub-blocks, and lets 

them be processed by multiple cores in parallel. Recently, macroblock-based parallelization 

approaches have been attempted [8]-[12]. The macroblock level parallelization is typically 

carried out by allocating threads for processing macroblocks. However, data dependencies 
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exist in H.264/AVC as shown in Fig. 1. For example, before the intra-prediction step for 

“Current macroblock (MB)” is conducted, intra-predictions for macroblocks 1, 2, 3, and 4 

must be done first.  

1. MC/IP 2. MC/IP/DF 3. MC/IP

4. MC/IP/DF
Current 

MB

 
Fig. 1. Spatial data dependencies for a macroblock 

One of the most popular macroblock-level parallelization methods is 2D-Wave. Fig. 2 

shows an example of 2D-Wave processing observing data dependencies. Macroblocks 

MB(4,0), MB(2,1) and MB(0,2) can be processed in parallel. Yet, since the processing time of 

each macroblock will be different, synchronization needs to occur. In 2D-Wave, a thread is 

allocated to process a set of macroblocks, and macroblocks are processed in the order that the 

arrows indicate in Fig. 2.  
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Fig. 2. An example of macroblock level parallelization 

2D-Wave does not parallelize every decoding step. The ED step is processed sequentially 

first. After the ED step is done, MC+IT/IQ or IP+IT/IQ is processed in parallel, then DF is 

processed in parallel. Entropy decoding should be completed before starting the data-level 

parallel processing because entropy decoding may not be parallelized easily. When the video 

resolution is higher, CABAC is commonly used since the compression efficiency is better than 

CAVLC. However, entropy decoding based on CABAC takes more time. Therefore, various 

approaches to reduce the decoding time through parallelization have been attempted. 
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2.2.2. Parallel Entropy Decoding 

Entropy coding in H.264/AVC employs either CAVLC or CABAC. CABAC consists of 

binarization, context modeling, and binary arithmetic coding. In binarization, the symbols of 

the block are converted into binary strings. In the context modeling stage, the probability of 

occurrence for each binary string is calculated based on previously coded values or other 

symbols in the neighborhood. Since the probability in CABAC is not fixed, but continuously 

updated, the compression efficiency is better than CAVLC. However, the computational 

complexity is higher. Due to this sequential computation structure, CABAC is known to be 

very hard to parallelize. To overcome such difficulty, various approaches to speed up CABAC 

have been proposed [13]-[15]. However, these methods were only used to parallelize specific 

portions of the CABAC processing, which resulted in limited performance gains and relatively 

low compression efficiency. To improve the compression efficiency, the CABAC algorithm 

using syntax element partitioning was proposed [16]. The syntax element is an element of data 

represented in the bit stream. CABAC decodes every bin of the syntax element using binary 

arithmetic decoding based on its probability model. In syntax element partitioning, syntax 

elements are grouped first, and CABAC is processed for each group. For videos, which have 

been encoded using syntax element partitioning, entropy decoding of MBINFO, PRED, CBP, 

SIGMAP, and COEFF groups in parallel is possible. The detailed information on the assigned 

syntax elements in each group is explained in [16]. This syntax element partitioning achieves a 

better compression efficiency than other parallel CABAC decoding methods.  

MBINFO   →   CBP
 Size of Blocks

         MBINFO   →  
      Intra Prediction or 

    Motion Compensation         PRED

              CBP       →
                        Transform Size

CBP  →   SIGMAP
 Size of Coded Block

  SIGMAP → COEFF   
Number of Coefficients  

Fig. 3. Dependencies among syntax elements groups 

However, dependencies hindering the full parallelization of the decoding process exist 

among syntax element groups, as shown in Fig. 3. The CBP group can be decoded only after 

the MBINFO group is decoded. The PRED group can be decoded only after the MBINFO 

group and the CBP group are decoded, and so forth. Particularly, the encoding process of 

SIGMAP and COEFF are tightly linked. Therefore, it is more efficient to process both groups 

in one task. MT-SEP was proposed as a 4-stage pipelined parallel CABAC processing method 

where the first task is allocated for the MBINFO group, the second is for CBP, the third is for 

PRED, and the fourth task is for SIGMAP and COEFF. To reduce synchronization overhead, 

multiple groups of syntax elements are processed in one stage. Fig. 4 shows the 4-stage 

MT-SEP pipelined processing.    
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Task 1

Task 2

Task 3

Task 4

MBINFO Groups

PRED Groups

CBP Groups

SIGMAP,COEFF Groups  

Fig. 4. Thread allocation for multiple groups of MT-SEP 

Using existing methods such as 2D-Wave and MT-SEP, we can improve decoding 

performance for some specific decoding steps. However, a partial parallelization may not 

result in sufficient performance improvements. Particularly, entropy decoding was often 

considered separately from other decoding steps since the entropy decoding step might not be 

parallelized easily. Therefore, we propose a novel method called Integrated Multi-Threaded 

Parallelization (IMTP) which takes parallelization of every decoding step into consideration in 

an integrated fashion. In IMTP, multi-threading techniques are flexibly and effectively applied 

to optimize the overall performance for the H.264/AVC decoding. 

2.2.3. Performance Evaluation for Parallel Video Decoding 

 
Fig. 5. Performance evaluation for MT-SEP 
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Fig. 6. Performance evaluation for 2D-Wave 

Fig. 5 shows the decoding process speedup of the MT-SEP method on an Intel i7 multi-core 

system. Fig. 6 shows the performance evaluation when 2D-Wave was applied to the rest of the 

decoding steps on the same platform. As shown in Fig. 5, we observe that allocating 4 threads 

on an Intel i7 multi-core system leads to the best performance in MT-SEP. On the other hand, 

in case of 2D-Wave, as we increase the number of threads from 2 to 8, the speedup of the 

decoding process is enhanced by up to 4.34, as shown in Fig. 6. These experimental results 

imply that there is a clear difference between MT-SEP and 2D-Wave in terms of 

parallelization potential and scalability. Thus, we need to take this difference into account to 

maximize the performance enhancement for the overall decoding step. In IMTP, such 

consideration is the key contribution, and our experimental results verified that it was 

worthwhile to consider such a difference. 

  3. Integrated Multi-Threaded Parallelization 

3.1. Overview of Integrated Multi-Threaded Parallelization 

 
Fig. 7. Overall stucture of Integrated Multi-Threaded Parallelization 
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Thread 2
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Thread 4

MT-SEP 2D-Wave

Time  
Fig. 8. Thread allocation for Integrated Multi-Threaded Parallelization 

The main goal of the proposed IMTP method is maximizing the performance of the entire 

video decoding process of H.264/AVC through parallelization in an integrated fashion. Fig. 7 

shows the overall parallelization structure of the IMTP method. In IMTP, multi-threading 

techniques are flexibly and effectively applied to optimize the overall performance for the 

H.264/AVC decoding. Thread allocation methods in IMTP are shown in Fig. 8. ED is 

parallelized using a modified MT-SEP method and 2D-Wave is applied for MC, IP, IQ/IT and 

DF.  

To maximize the video decoding performance, we minimize the decoding time of the 

overall H.264/AVC decoder. The goal function of IMTP is described as (1): 

 

                                           [                     ]                               (1) 

 

where DED, DMC+IT|IQ, DIP+IT|IQ and DDF represent the delay of each decoding stage in 

H.264/AVC, respectively, and max[DMC+IT/IQ, DIP+IT/IQ] denotes the longer delay between the 

two delay components.  

To parallelize the entropy decoding stage, MT-SEP was implemented with a pipelining 

method. Using OpenMP’s parallel section directive, which can define sections for 

parallelization, an efficient multi-threading mechanism was devised. To implement 2D-Wave, 

we used OpenMP’s parallel section directive to parallelize the decoding steps using multiple 

threads.  

We evaluated the performance of our implementation with respect to various numbers of 

threads. From our experiments, we learned that MT-SEP showed the best performance when 

we allocated 4 threads. On the other hand, for 2D-Wave, which parallelized the MC, IT/IQ, IP, 

DF steps, we could achieve a better performance as we increased the number of threads, since 

2D-Wave had ample potential for parallelization. Thus, such a difference should be exploited 

to achieve the best performance enhancement for the overall decoding step. 

3.2. Parallelization Using Simultaneous Multi-Threading 

3.2.1. Parallel Entropy Decoding with Two Independent Bins 

The main reason why entropy decoding cannot be parallelized easily is that binary symbols, 

called bins, refer to a previously decoded bins’ context model. However, two bins are 
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independent when they do not refer to the same context model. Then, the two bins can be 

decoded in parallel and the computational overhead due to renormalization can be reduced 

[13]. Kim et al. analyzed the patterns of context models applied to two consecutive bins in a 

syntax element. They found that context models for the two consecutive bins were mostly 

independent. They implemented two CABAC decoders in the hardware and when two 

consecutive bins were independent, two consecutive bins were decoded in parallel to speed up 

the entropy decoding process. 

3.2.2. Improving the Performance of MT-SEP using Simultaneous Multi-Threading 
(SMT) 

In the modified MT-SEP, we make groups of syntax elements, where each group contains 4 

syntax elements, and we parallelize the entropy decoding when two bins in one syntax element 

group are independent. We parallelize the entropy decoding of two bins by simultaneous 

multi-threading (SMT). SMT allows multiple threads to feed instructions to the instruction 

pipeline of a superscalar processor, and improves performance by supporting thread-level 

parallelism. An SMT processor pretends to be multiple logical processors and applications 

running on an SMT system simultaneously share processor resources. A higher instruction 

throughput and execution speedup are beneficial for a variety of workloads [17]-[19]. Fig. 9 

shows how we allocate multiple threads for MT-SEP and 2D-Wave differently. 

S
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Fig. 9. Simultaneous Multi-Threading allocation for IMTP 

By utilizing SMT, we further improved MT-SEP performance, which had been maximized 

using 4 threads. We can decode two symbols simultaneously if the context models of the 

decoded bin and the current bin are independent. Fig.10 shows a flow diagram of the modified 

MT-SEP. When the context model is loaded in each syntax element group, we check the 

context models of two consecutive bins. We can tell whether two bins are independent or not 

by using the context model parameters. If two binary signals do not refer to the same context 

model, they can be independently processed when the signal is being processed in the pipeline 

and we switch on SMT. Through this, each of the 4 partitioned syntax element groups 

(MBINFO, CBP, PRED, SIGMAP and COEFF) can be parallelized using 2 threads 

independently. Therefore, we could extend the parallelization potential to 8 parallel decoding 
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processes to maximize the parallelization level. In addition, we allocated 8 threads to 

2D-Wave parallelization to maximize the performance by increasing the parallelism that can 

be exploited in each decoding stage.  

We considered both MT-SEP and 2D-Wave simultaneously, and by SMT, we parallelized 

the entire decoding process by using up to 8 threads on 4 physical cores. In applying SMT, the 

characteristics of each decoding stage were reflected to maximize the parallelization potential. 

Context selection

Context model

loading

Binarization 

matching

Context model 

update

Independent?

Valid ?

Check the context 

model parameter

     BAC
offeset

Range
     BAC

offeset

Range
     BAC

offeset

Range

To the next syntax elementTo the next syntax element

Yes : Switch on SMT No : Switch off SMT

bin value

context model

Yes

No

bin value

context model, bitstream

bin string

context model, bitstream

 
Fig. 10. Flow diagram of the modified MT-SEP 

3.3. Maximization of Video Decoding Performance with Synchronization and 
Scheduling 

MT-SEP is a task-level parallelization, and syntax element partitioning is independently 

processed by a different thread. 2D-Wave is a data-level parallelization, and a sequential 

multi-threading is applied. Therefore, it is crucial to maximize the decoding performance 

utilizing load balancing which takes parallelization properties of each decoding step into 

account. Therefore, we used OpenMP’s schedule directive to apply an appropriate thread 

scheduling method to each decoding stage to maximize the overall decoding performance. 

To find out the best thread scheduling for each decoding stage, we conducted experiments 

to evaluate various multi-thread scheduling methods. For MT-SEP, it turned out that static 

round-robin thread scheduling was best. In MT-SEP, to minimize the overhead due to frequent 

synchronization, the decoding is processed with equally sized groups. Hence threads are 

allocated evenly, and simply repeating the same process is the most efficient. Thus, static 
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round-robin scheduling was chosen. By using static scheduling, iterations of CABAC on 

equally sized syntax element groups are mapped statically to execution threads in a 

round-robin fashion. The threads in MT-SEP will execute for the same iteration range in 

parallel regions. Thus, workloads of the CABAC decoding are well balanced. We used a wait 

directive, which blocks the next entropy decoding of syntax element group, to synchronize the 

MT-SEP steps. All the independent threads are synchronized at the end of entropy decoding 

specified by the barrier directive. 

In 2D-Wave, thread allocation needs to be more dynamic, in the sense that threads that 

finish the allocated job early will be re-scheduled dynamically to take care of other unfinished 

tasks to improve the overall decoding speed. Because the processing time for each macroblock 

is not evenly-balanced in 2D-Wave, it is better to allocate threads dynamically to process 

macroblocks of which dependency constraints have been lifted.  The threads produce different 

iteration spaces by using dynamic scheduling to decode each macroblock. Therefore, we used 

a wait directive to synchronize the decoding order between upper right and the current 

macroblocks. Fig. 11 shows the overview of the synchronization and scheduling in IMTP. 

 

 
Fig. 11. Synchronization and scheduling overview of IMTP 
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In summary, by using SMT with properly selected thread scheduling methods for each 

decoding stage, we took different parallelization potentials inherent in 2D-Wave and MT-SEP, 

with load balancing and synchronization overhead taken into account, to maximize the overall 

decoding performance in the proposed IMTP method. As a result, IMTP shows excellent 

performance compared with other existing methods. Detailed experimental results are 

addressed in the section 4. 

3.4. Storage Requirements of the Proposed Video Decoder  

The proposed IMTP decoder and a conventional H.264/AVC Main Profile decoder are 

compared with respect to the amount of storage requirements. The amount of storage 

requirements for the Main Profile decoder (SRMPD) can be expressed as (2):  

 

      ((   )  .   )     
 

  
 

 

  
                                          (2) 

 

where n is the number of reference frames, w is the width of the frame, and h is the height of 

the frame. The number of macroblocks in a frame is (w ⁄16)×(h ⁄  ) and one pixel requires 1.5 

bytes of storage [20].  

The proposed IMTP method parallelizes the decoding process utilizing SMT with 8 

threads after MT-SEP and 2D-Wave have been applied. In the first stage of the ED process, 50 

syntax element groups for each macroblock are processed in parallel with 8 threads. Thus, the 

additional storage requirements will be (   ) (    )⁄⁄       [3]. In the remaining decoding 

steps, the additional storage requirements will be (   ) (    )⁄⁄    to store the lines of 

macroblocks inside a frame for 2D-Wave with 8 threads. Consequently, the overall storage 

requirements of the proposed IMTP decoder (SRIMTP) will be expressed as (3):   

 

       ((   )  .   )     
w

  
 

 

  
 (         )                             (3) 

 

where n is the number of reference frames, w is the width of the picture and h is the height of 

the frame. 

      is approximately 11.4 Mbytes and SRIMTP is about 14.7 Mbytes in decoding a FHD 

resolution video frame. Therefore, the proposed IMTP video decoder requires about 30% 

more storage overhead than a conventional Main Profile decoder. 

4. Experimental Results and Analysis 

4.1. Experimental Environments 

To evaluate the performance of IMTP, we parallelized KTA (Key Technical Area) 2.7 

which has been developed for the next generation standard. KTA 2.7 is a software package 

based on JM 11.0 and contains algorithms for the next generation video processing. JCT-VC is 

currently developing the next generation video coding standard called HEVC. We first 

encoded all the sample videos using KTA 2.7. The encoding environment was based on the 

H.264/AVC Main Profile at 30 frames/second provided by KTA 2.7, and the quantization 

parameters (QPs) were set to 26, 32 and 38. The number of previous frames used for 

inter-motion search was 5, and a weighted prediction was used. The resolutions of sample 

videos were HD and FHD. 
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The operating system was Linux Ubuntu 11.04 with kernel version 2.6.31. The parallel 

implementation was executed on an Intel i7 processor. The Intel Quad-Core i7 processor has 4 

physical cores but it works as 8 logical cores to allocate 8 threads by SMT.  

GCC v4.5.2 was used as the compiler and OpenMP [21], [22] was used for parallelization. 

OpenMP is an application program interface standard for a shared memory multi-processor. 

Since OpenMP is a pragma-based parallelization mechanism, the application code itself 

doesn’t have to be modified. Therefore, it’s a simple way to parallelize a code originally 

written for sequential processing. We inserted OpenMP pragmas to parallelize the decoding 

process. The inserted OpenMP pragmas were pre-processed by an OpenMP-compliant 

compiler, and as a result, multiple threads for parallel processing were generated. 

4.2. Experimental Results 

Existing parallelization techniques such as 2D-Wave and MT-SEP are focused only a certain 

portion of the decoding process without considering the entire decoding process. Therefore, 

we proposed an IMTP method to optimize the entire decoding process. We compared the 

performance of IMTP with 2D-Wave without parallelizing the entropy decoding and MT-SEP, 

which only parallelized the entropy decoding on a multi-core system. All the experimental 

results are the minimum decoding times of benchmarks for one video frame, and speedup is 

used as a performance parameter, which refers to how much a proposed decoder is faster than 

existing decoder. The decoding times are reported in a microsecond resolution and they were 

measured by a clock_gettime( ) system call, which obtains the system’s notion of the current 

time using a high resolution timer (HRT) [23].  

Table 1 shows the decoding times for the entire decoding process when no parallelization 

technique was applied. Table 2 shows the decoding times of MT-SEP method applied to the 

entropy decoding step. Table 3 summarizes the decoding times of 2D-Wave. Table 4 

compares the decoding time for one frame of the IMTP method with existing parallelization 

methods. Table 5 summarizes the decoding time for one frame after we applied the proposed 

scheduling techniques in IMTP. Last, Table 6 summarizes the decoding time for one frame 

with different quantization parameters. 

Ideally, performance may be improved by four times on a quad-core processor over a 

single-core processor when everything is perfectly parallelized. However, it is almost 

impossible to achieve such improvement in practice since execution may not be fully 

parallelized due to data and control dependencies and synchronization overhead. As we 

observe from Table 2, with application of MT-SEP, we achieved the process speedup of up to 

2.12 in entropy decoding. However, the process speedup was only 1.19 with respect to the 

entire decoding performance. In Table 3, when 2D-Wave was applied to MC+IQ/IT, 

IP+IQ/IT and DF operations, excluding entropy decoding, on a multi-core system with 4 

physical cores, the process speedup was up to 2.64. Moreover, when we additionally used 

SMT to allocate up to 8 threads, we improved the performance, and the process speedup was 

up to 4.34 times faster. However, since parallelization of entropy decoding was not included, 

the process speedup was only 1.8 times faster with respect to the entire decoding time.  

Table 4 summarizes the performance improvement of the proposed IMTP with respect to 

the entire decoding time. The process speedup of the proposed IMTP was up to 2.7 times faster. 

Table 5 shows performance results when we applied different thread scheduling methods to 

each decoding stage to fully utilize the characteristics of each decoding stage. The speedup of 

proposed IMTP method shows up to 3.35 times faster with respect to the entire decoding time.  
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In [24], the authors claimed that MC step took the longest average decoding time among 

the H.264/AVC decoding steps because interpolation of reference samples to generate a 

motion-compensated prediction is pretty complex. Therefore, the more inter-coded 

macroblocks exist, the longer time it takes to decode the video. To understand the correlation, 

we conducted experiments of measuring decoding times of the proposed method when we 

varied the number of inter-coded macroblocks for a FHD resolution video sample with a QP of 

26. Fig. 12 shows the result. The decoding time is almost linearly correlated with the number 

of inter-coded macroblocks. 

 

 
Fig. 12. Video decoding time after IMTP with different number of inter-coded macroblocks  

Finally, we compared the performance of IMTP with different QPs : 26, 32 and 38.  Table 

6 shows the maximum, minimum, and average decoding time per frame of the testing 

sequences and standard deviation values. The maximum deviation value of the decoding time 

is 919.45 microsecond when decoding the blue_sky test sequence with a QP of 26. When the 

QP is increased by 6, the quantization step size is increased by a factor of 2, and the video 

decoding time per frame is decreased. The result verifies that our proposed IMTP method is 

truly effective since it clearly shows that the total decoding time is actually improved by the 

application of the method. 

5. Conclusion 

Demand for high resolution video processing techniques is rapidly increasing as 

high-definition digital broadcasting services become more widely provided. Therefore, highly 

efficient video coding and decoding techniques should be studied actively. To parallelize the 

CABAC entropy decoding, the MT-SEP method was proposed.  For the rest of the decoding 

stages, 2D-Wave is one of the most popular parallelization techniques. However, since these 

methods focused only a certain portion of the decoding process without considering the entire 

decoding process, they are not sufficiently effective in optimizing the entire decoding process. 
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Therefore, we proposed the Integrated Multi-Threaded Parallelization (IMTP) method to 

optimize the entire decoding process. 

In IMTP, we used simultaneous multi-threading (SMT) to allocate up to 8 threads on an 

Intel i7 multi-core system with 4 physical cores. Also, we applied different thread scheduling 

methods to different decoding stages to effectively utilize the parallelization potentials 

inherent in each decoding stage. The speedup of the proposed IMTP method improves up to 

3.35 times with respect to the entire decoding time. Future works to apply IMTP methods to 

other multi-core system such as mobile multi-core systems are ongoing. Finally, we are 

working on a technique to minimize power consumption while maintaining high performance 

in parallel video decoding. 

 

 
Table 1. Processing speed of frame per video decoding before parallelization  

Before Parallelization (QP=26) 
ED 

MC+IT/IQ 

IP+IT/IQ and DF 
Total 

(μs) (μs) (μs) 

mobical HD, 1280X720 26215 62916 89131 

stockholm HD, 1280X720 34810 83544 118354 

shileds HD, 1280X720 22215 53316 75531 

blue_sky FHD,1920X1088 36906 85931 122837 

pedestrian area FHD,1920X1088 35722 78088 113810 

sunflower FHD,1920X1088 38116 97719 135835 

rush_hour FHD,1920X1088 33691 84374 118065 

 

Table 2. Processing speed of frame per video decoding after MT-SEP  

ED (QP=26) 

Before 

MT-SEP 
MT-SEP Total 

(μs) (μs) Speedup (μs) Speedup 

mobical HD, 1280X720 26215 17373 1.51 80289 1.11 

stockholm HD, 1280X720 34810 26657 1.31 110201 1.07 

shileds HD, 1280X720 22215 13300 1.67 66616 1.13 

blue_sky FHD,1920X1088 36906 17644 2.09 103575 1.19 

pedestrian area FHD,1920X1088 35722 18045 1.98 96133 1.18 

sunflower FHD,1920X1088 38116 17941 2.12 115660 1.17 

rush_hour FHD,1920X1088 33691 16128 2.09 100502 1.17 

 

Table 3. Processing speed of frame per video decoding after 2D-Wave  
MC+IT/IQ, 

IP+IT/IQ,DF  

(QP=26) 

Before 

2D-Wave 

2D-Wave 

(4 threads) 

2D-Wave with SMT 

(8 threads) 
Total 

(μs) (μs) Speedup (μs) Speedup (μs) Speedup 

Mobical HD, 1280X720 62916 25166 2.50 15099 4.17 41314 2.16 

Stockholm HD, 1280X720 83544 32582 2.56 26392 3.17 61202 1.93 

Shileds HD, 1280X720 53316 22925 2.33 13756 3.88 35971 2.10 

blue_sky FHD,1920X1088 85931 32950 2.61 19795 4.34 69856 1.76 

pedestrian area FHD,1920X1088 78088 30796 2.54 18685 4.18 66518 1.71 

Sunflower FHD,1920X1088 97719 37600 2.60 22623 4.32 75716 1.79 

rush_hour FHD,1920X1088 84374 31917 2.64 19604 4.30 65608 1.80 
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Table 4. Processing speed of frame per video decoding after IMTP  

IMTP (QP=26) 

Before 

Parallelization 
Only MT-SEP Only 2D-Wave IMTP 

(μs) (μs) Speedup (μs) Speedup (μs) Speedup 

Mobical HD, 1280X720 89131 80289 1.11 41314 2.16 33051 2.70 

Stockholm HD, 1280X720 118354 110201 1.07 61202 1.93 50286 2.35 

Shileds HD, 1280X720 75531 66616 1.13 35971 2.10 28776 2.62 

blue_sky FHD,1920X1088 122837 103575 1.19 69856 1.76 48622 2.53 

pedestrian area FHD,1920X1088 113810 96133 1.18 66518 1.71 48329 2.35 

Sunflower FHD,1920X1088 135835 115660 1.17 75716 1.79 52681 2.58 

rush_hour FHD,1920X1088 118065 100502 1.17 65608 1.80 51786 2.70 

 

Table 5. Processing speed of frame per video decoding after IMTP with scheduling techniques  

IMTP (QP=26) 

Before 

Parallelization 

IMTP 

(Before Scheduling) 

IMTP 

(After Scheduling) 

(μs) (μs) Speedup (μs) Speedup 

Mobical HD, 1280X720 89131 33051 2.70 28012 3.18 

Stockholm HD, 1280X720 118354 50286 2.35 38217 3.10 

Shileds HD, 1280X720 75531 28776 2.62 22869 3.30 

blue_sky FHD,1920X1088 122837 48622 2.53 37439 3.28 

pedestrian area FHD,1920X1088 113810 48329 2.35 36730 3.10 

sunflower FHD,1920X1088 135835 52681 2.58 40564 3.35 

rush_hour FHD,1920X1088 118065 51786 2.70 35732 3.18 

 

Table 6. Processing speed of frame per video decoding with different quantization parameter 

IMTP  

(Decoding time /frame) 

Maximum  

decoding time 

Minimum 

decoding time 

Average 

decoding time 

Standard  

deviation 

(μs)    (μs)     (μs) (μs) 

QP=26 

Mobical HD, 1280X720 30013 28012 28930.83 883.55 

Stockholm HD, 1280X720 40306 38217 39133.64 877.27 

Shileds HD, 1280X720 24914 22869 23790.75 879.34 

blue_sky FHD,1920X1088 39573 37439 38392.12 919.45 

pedestrian area FHD,1920X1088 38912 36730 37690.23 903.21 

Sunflower FHD,1920X1088 42716 40564 41514.72 887.21 

rush_hour FHD,1920X1088 37932 35732 36694.28 897.83 

QP=32 

Mobical HD, 1280X720 28212 26331 27194.98 830.54 

Stockholm HD, 1280X720 37888 35924 36785.62 824.63 

Shileds HD, 1280X720 23419 21497 22363.31 826.58 

blue_sky FHD,1920X1088 37199 35193 36088.59 864.28 

pedestrian area FHD,1920X1088 36577 34526 35428.82 849.02 

Sunflower FHD,1920X1088 40153 38130 39023.84 833.98 

rush_hour FHD,1920X1088 35656 33588 34492.62 843.96 

QP=38 

Mobical HD, 1280X720 26832 25043 25864.16 789.89 

Stockholm HD, 1280X720 36034 34166 34985.47 784.28 

Shileds HD, 1280X720 22273 20445 21268.93 786.13 

blue_sky FHD,1920X1088 35378 33470 34322.56 821.99 

pedestrian area FHD,1920X1088 34787 32837 33695.07 807.47 

sunflower FHD,1920X1088 38188 36264 37114.16 793.17 

rush_hour FHD,1920X1088 33911 31944 32804.69 802.66 
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