• 제목/요약/키워드: enriched finite element

검색결과 15건 처리시간 0.017초

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics

  • Matsubara, Hitoshi;Yagawa, Genki
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.277-293
    • /
    • 2009
  • The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments

  • Wu, C.T.;Hu, Wei
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.83-105
    • /
    • 2013
  • In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

균열해석을 위한 겹침확장 유한요소법 (Combined Extended and Superimposed Finite Element Method for Crack Analysis)

  • 이상호;송정훈;허문석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.341-348
    • /
    • 2004
  • This paper presents a modeling technique of cracks by combined extended and superposed finite element method (XSFEM) which is a combination of the extended finite element method (XFEM) and the mesh superposition method (sversion FEM). In the proposed method, the near-tip field is modeled by a superimposed patch consisting of quarter point elements and the rest of the discontinuity is treated by the XFEM. The actual crack opening in this method is measured by the sum of the crack openings of XFEM and SFEM in transition region. This method retains the strong point of the XFEM so it can avoid remeshing in crack evolution and trace the crack growth by translation or rotation of the overlaid mesh and the update of the nodes to be enriched by step functions. Moreover, the quadrature of the Galerkin weak form becomes simpler. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed method.

  • PDF

Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution

  • Yoon, Kyungho;Kim, Do-Nyun;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.33-42
    • /
    • 2017
  • We present in this paper a finite element formulation for nonlinear torsional analysis of 3D beams with arbitrary composite cross-sections. Since the proposed formulation employs a continuum mechanics based beam element with kinematics enriched by the extended St. Venant solutions, it can precisely account higher order warping effect and its 3D couplings. We propose a numerical procedure to calculate the extended St. Venant equation and the twisting center of an arbitrary composite cross-section simultaneously. The accuracy and efficiency of the proposed formulation are thoroughly investigated through representative numerical examples.

확장유한요소법을 이용한 철근 콘크리트 보의 다중균열 해석 (Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method)

  • 유현석;김한수
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.201-208
    • /
    • 2016
  • 최근에 요소망의 재구성이 불필요하고 균열의 가시화에 강점을 가지는 확장유한요소법(XFEM)을 이용한 균열 해석이 많이 연구되고 있지만 주로 단일재료로 이루어진 부재의 해석에 집중되어 있다. 본 논문에서는 복합재료 부재인 철근콘크리트 보의 다중균열 해석에 확장유한요소법을 적용하며 그 적용성과 타당성을 살펴보았다. 확장유한요소해석 기능이 탑재된 상용 해석프로그램인 ABAQUS를 사용하여 균열해석을 수행하였으며 그 결과를 실험결과와 비교하였다. 확장유한요소법에서 인접요소에 동시에 균열이 발생할 경우 균열의 불연속성이 나타나지 않은 부가자유도 잠김 현상을 발견하였고 이에 대한 원인과 그 해결방안을 제시하였다. 또한 실험결과와 유사한 다중균열 발생을 위한 모델링 기법도 제시하였다. 확장유한요소법을 이용한 해석결과는 실험결과와 유사한 균열 양상 및 균열 간격을 보여 주었으며 하중-변위 관계에 있어서도 실험에 근접한 결과를 보여 주었다.

A direct XFEM formulation for modeling of cohesive crack growth in concrete

  • Asferg, J.L.;Poulsen, P.N.;Nielsen, L.O.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.83-100
    • /
    • 2007
  • Applying a direct formulation for the enrichment of the displacement field an extended finite element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST). Modeling of standard concrete test cases such as fracture in the notched three point beam bending test (TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show good agreement with results obtained by applying standard interface elements in FEM and with experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of the crack growth direction is discussed.