Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.083

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments  

Wu, C.T. (Livermore Software Technology Corporation)
Hu, Wei (Livermore Software Technology Corporation)
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 83-105 More about this Journal
Abstract
In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.
Keywords
acoustic; multi-scale; finite element; Helmholtz; meshfree;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, C.T., Hu, W. and Chen, J.S. (2012), "A meshfree-enriched finite element method for compressible and near-incompressible elasticity", Int. J. Numer. Meth. Eng., 90(7), 882-914.   DOI   ScienceOn
2 Wu, C.T. and Koishi, M. (2012), "Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites", Int. J. Numer. Meth. Eng., 91(11), 1137-1157.   DOI   ScienceOn
3 Wu, C.T., Guo, Y. and Askari, E. (2013), "Numerical modeling of composite solids using an immersed meshfree Galerkin method", Composit. B, 45(1), 1397-1413.   DOI   ScienceOn
4 Yao, L.Y., Yu, D.J., Cui, X.Y. and Zang, X.G. (2010), "Numerical treatment of acoustic problems with the smoothed finite element method", Appl. Acoust., 71(8), 743-753.   DOI   ScienceOn
5 You, Y., Chen, J.S. and Voth, T.E. (2002), "Characteristics of semi- and full discretization of stabilized Galerkin meshfree method", Finite Elem. Anal. Des., 38(10), 999-1012.   DOI   ScienceOn
6 Oberai, A.A. and Pinsky, P.M. (1998), "A multiscale finite element method for the Helmholtz equation", Comput. Meth. Appl. Mech. Eng., 154(3-4), 281-297.   DOI   ScienceOn
7 Oberai, A.A. and Pinsky, P.M. (2000), "A residual-based finite element method for the Helmholtz equation", Int. J. Numer. Meth. Eng., 49(3), 399-419.   DOI
8 Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using generalized meshfree approximation", Finite Elem. Anal. Des., 47(7), 683-697.   DOI   ScienceOn
9 Uras, R.A., Chang, C.T., Chen, Y. and Liu, W.K. (1997), "Multi-resolution reproducing kernel particle methods in Acoustics", J. Comput. Acoust., 5, 71-94.   DOI   ScienceOn
10 Suleau, S. and Bouillard, P. (2000), "One-dimensional dispersion analysis for the element-free Galerkin method for the Helmholtz equation", Int. J. Numer. Meth. Eng., 47(6), 1169-1188.   DOI
11 Voth, T.E. and Christon, M.A. (2001), "Discretization errors associated with reproducing kernel methods: one-dimensional domains", Comput. Meth. Appl. Mech. Eng., 190(18-19), 2429-2446.   DOI   ScienceOn
12 Wenterodt, C. and von Estorff, O. (2009), "Dispersion analysis of the meshfree radial point interpolation method for the Helmholtz equation", Int. J. Numer. Meth. Eng., 77(12), 1670-1689.   DOI   ScienceOn
13 Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2(2), 129-151.   DOI   ScienceOn
14 Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized approximation for the meshfree analysis of solids", Int. J. Numer. Meth. Eng., 85(6), 693-722.   DOI   ScienceOn
15 Wu, C.T. and Hu, W. (2011), "Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Meth. Appl. Mech. Eng., 200(45-46), 2991-3010.   DOI   ScienceOn
16 Harari, I. and Hughes, T.J.R. (1992), "Galerkin/least squares finite element method for the reduced wave equation with non-reflecting boundary conditions", Comput. Meth. Appl. Mech. Eng., 98(3), 441-454.
17 Harari, I. and Gosteev, K. (2007), "Bubble-based stabilization for the Helmholtz equation", Int. J. Numer. Meth. Eng., 70(10), 1241-1260.   DOI   ScienceOn
18 Hughes, T.J.R., Scovazzi, G. and Franca, L.P. (2004), "Multiscale and stabilized methods", Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd, 3.
19 Harari, I. (2008), "Multiscale finite elements for acoustics: continuous, discontinuous, and stabilized methods", Int. J. Numer. Meth. Eng., 6, 511-531.
20 Hu, W., Wu, C.T. and Koishi, M. (2012), "A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers", Finite Elem. Anal. Des., 50, 161-172.   DOI   ScienceOn
21 Hughes, T.J.R. and Sangalli, G. (2007), "Variational multiscale analysis: the fine-scale Green's function, projection, optimization, localization, and the stabilized methods", SIAM J. Numer. Anal., 45(2), 539-557.   DOI   ScienceOn
22 Ihlenburg, F. and Babuska, I. (1995), "Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of FEM", Comput. Math. Appl., 30(9), 9-37.
23 Ihlenburg, F. and Babuska, I. (1997), "Finite element solution of the Helmholtz equation with high wave number Part II: The h-p version of FEM", SIAM J. Numer. Anal., 34(1), 315-358.   DOI   ScienceOn
24 Lai, S.J., Wang, B.Z. and Duan, Y. (2010), "Solving Helmholtz equation by meshless radial basis functions method", Prog. Electromagnetics Res. B, 24, 351-367.   DOI
25 Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fl., 20(8-9), 1081-1106.   DOI   ScienceOn
26 Liu, W.K., Hao, W., Chen, Y., Jun, S. and Gosz, J. (1997), "Multiresolution reproducing kernel particle methods", Comput. Mech., 20, 295-309.   DOI   ScienceOn
27 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256.   DOI   ScienceOn
28 Babuska, I., Ihlenburg, F., Paik, E. and Sauter, S. (1995), "A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution", Comput. Meth. Appl. M., 128(3-4), 325-359.   DOI   ScienceOn
29 Baiges, J. and Codina, R. (2013), "A variational multiscale method with subscales on the element boundaries for the Helmholtz equation", Int. J. Numer. Meth. Eng., 93(6), 664-684.   DOI   ScienceOn
30 Belytschko, T. and Mullen, R. (1978), "On dispersive properties of finite element solutions", Modern Problems in Elastic Wave Propagation, John Wiley & Sons, Ltd.
31 Bouillard, P. and Suleau, S. (1998), "Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of pollution effect", Comput. Meth. Appl. Mech. Eng., 161, 317-335.
32 Franca, L.P., Madureira, A.L. and Valentin, F. (2005), "Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions", Comput. Meth. Appl. Mech. Eng., 194(27-29), 3006-3021.   DOI   ScienceOn
33 Farhat, C., Harari, I. and Franca, L.P. (2001), "The discontinuous enrichment method", Comput. Meth. Appl. Mech. Eng., 190, 6455-6479.   DOI   ScienceOn
34 Harari, I. and Hughes, T.J.R. (1991), "Finite element method for the Helmholtz equation in an exterior domain: Model problems", Comput. Meth. Appl. Mech. Eng., 87(1), 59-96.   DOI   ScienceOn