Browse > Article
http://dx.doi.org/10.12989/sem.2006.22.2.151

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method  

Hamza-Cherif, Sidi Mohammed (Department of Mechanical Engineering, Faculty of Engineering Sciences, University Abou Bekr Belkaid)
Publication Information
Structural Engineering and Mechanics / v.22, no.2, 2006 , pp. 151-167 More about this Journal
Abstract
A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.
Keywords
Fourier p-element; stretch displacement; gyroscopic effect; rotating plates;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ramamurti, V. and Kielb, R. (1984), 'Natural frequencies of twisted rotating plates', J. Sound Vib., 97(3), 429-449   DOI   ScienceOn
2 Putter, S. and Manor, H. (1967), 'Natural frequencies of radial rotating beams', J. Sound Vib., 56, 175-185   DOI   ScienceOn
3 Bardell, N.S. (1989), 'The application of symbolic computing to hierarchical finite element method', Int. J. Num. Meth. Eng., 28, 1181-1204   DOI   ScienceOn
4 Dokainish, M.A. and Rawtani, S. (1971), 'Vibration analysis of rotating cantilever plates', Int. J. Num. Meth. Eng., 3, 233-248   DOI
5 Yoo, H., Ryan, R. and Scott, R. (1995), 'Dynamics of flexible beams undergoing overall motions', J. Sound Vib., 10, 139-148
6 Barton, M.V. (1951), 'Vibration of rectangular and skew cantilever plates', ASME J. Appl. Mech., 18,129-134
7 Houmat, A. (2001), 'A sector Fourier p-element applied to free vibration analysis of sector plates', J. Sound Vib., 243(2), 269-282   DOI   ScienceOn
8 Babuska, I., Szabo, B.A. and Katz, I.N. (1981), 'The p-version of the finite element method', SIAM Journal on Numerical Analysis, 18, 515-545   DOI   ScienceOn
9 Bardell, N.S. (1992), 'Free vibration analysis of a flat plate using the hierarchical finite element method', J. Sound Vib., 151, 263-289
10 Bardell, N.S. (1992), 'The free vibration of skew plates using the hierarchical finite element method', Comput. Struct., 45(5), 841-874   DOI   ScienceOn
11 Cote, A. and Charron, F. (2001), 'On the selection of p-version shape functions for plate vibration problems', Compu. Struct., 79, 119-130   DOI   ScienceOn
12 Gordon, W.J. and Hall, C.A. (1973), 'Transfinite element methods: Blending-function interpolation over arbitrary curved element domains', Numer. Mathe, 21, 109-129   DOI
13 Hamza-cherif, S.M. and Houmat, A. (2004), 'Natural frequencies of rotating flexible beams by using hierarchical finite element method', Proc. of 8th Pan. Amer. Cong. of Appl. Mech., Havana, 10, 101-104
14 Houmat, A. (1997), 'An alternative hierarchical finite element method formulation applied to plate vibrations', J. Sound Vib., 206(2), 201-215   DOI   ScienceOn
15 Kane, T., Ryan, R. and Banerjee, A. (1987), 'Dynamics of a cantilever beam attached to a moving base', J. of Guidance, Control and Dynamics, 10, 139-151   DOI   ScienceOn
16 Langley, R.S. and Bardell, N.S. (1998), 'A review of current analysis capabilities applicable to the high frequency vibration prediction of aerospace structures', The Aeronautical Journal, 102, 287-297
17 Leissa, A. (1974), 'On a curve veering', J of Applied Mathematics and Physics, 25, 99-111   DOI
18 Szabo, B.A. and Sahrmann, G.J. (1988), 'Hierarchical plate and shells models based on p-extension', Int. J. Num. Meth. Eng., 26, 1855-1881   DOI   ScienceOn
19 Meirovitch, L. and Baruh, H. (1983), 'On the inclusion principle for the hierarchical finite element method', Int. J. Num. Meth. Eng., 19, 281-291   DOI   ScienceOn
20 Southwell and Gough (1921), 'The free transverse vibration of airscrew blades', British A.R.C, Report and Memoranda, 655
21 Szabo, B.A. and Babuska, I. (1991), Finite Element Analysis, John Wiley & Sons. Inc., New York
22 Yoo, H. and Chung, J. (2001), 'Dynamics of rectangular plates undergoing prescribed overall motions', J. Sound Vib., 239, 123-137   DOI   ScienceOn
23 Yoo, H. and Pierre, C. (2003), 'Modal characteristic of a rotating rectangular cantilever plate', J. Sound Vib., 259(1), 81-96   DOI   ScienceOn
24 Zhu, D.C. (1986), 'Development of hierarchical finite element method at BIAA', Proc. of the Int. Conf. on Computational Mechanics, Tokyo, I, 123-128