Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.3.379

Towards improving finite element solutions automatically with enriched 2D solid elements  

Lee, Chaemin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Kim, San (Department of Mechanical Convergence Engineering, Gyeongsang National University)
Publication Information
Structural Engineering and Mechanics / v.76, no.3, 2020 , pp. 379-393 More about this Journal
Abstract
In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.
Keywords
finite element method; enriched finite element; solution accuracy; mesh refinement; cover function; enrichment of interpolation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 An, X.M., Li, L.X., Ma, G.W., and Zhang, H.H. (2011), "Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes", Comput. Methods. Appl. Mech. Eng., 200(5-8), 665-74. https://doi.org/10.1016/j.cma.2010.09.013.   DOI
2 An, X.M., Zhao, Z.Y., Zhang, H.H., and Li, L.X. (2012), "Investigation of linear dependence problem of threedimensional partition of unity-based finite element methods", Comput. Methods. Appl. Mech. Eng., 233, 137-51. https://doi.org/10.1016/j.cma.2012.04.010.
3 Babuska, I., and Melenk, J.M. (1996), "The Partition of Unity Method", Int. J. Numer. Methods Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.   DOI
4 Babuska, I., and Banerjee, U. (2012), "Stable generalized finite element method (SGFEM)", Comput. Methods Appl. Mech. Eng., 201, 91-111. https://doi.org/10.1016/j.cma.2011.09.012.   DOI
5 Belytschko, T., and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), 602-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
6 Boo, S.H., Kim, J.G., and Lee, P.S. (2016), "A simplified error estimator for the CB method and its application to error control", Comput. Struct., 164, 53-62. https://doi.org/10.1016/j.compstruc.2015.11.003.   DOI
7 Boo, S.H., and Lee, P.S. (2017), "A dynamic condensation method using algebraic substructuring", Int. J. Numer. Methods Eng., 109(12), 1701-1720. https://doi.org/10.1002/nme.5349.   DOI
8 Boo, S.H., Kim, J.H., and Lee, P.S. (2018), "Towards improving the enhanced Craig-Bampton method", Comput. Struct., 196, 63-75. https://doi.org/10.1016/j.compstruc.2017.10.017.   DOI
9 Cook, R.D. (2007), Concepts and applications of finite element analysis, John Wiley & Sons, New York, U.S.A.
10 Fries TP, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng., 2010;84(3):253-304. https://doi.org/10.1002/nme.2914.   DOI
11 Ham, S., and Bathe, K.J. (2012), "A finite element method enriched for wave propagation problems". Comput. Struct., 94, 1-12. https://doi.org/10.1016/j.compstruc.2012.01.001.   DOI
12 Hong, W.T., and Lee, P.S. (2013), "Coupling flat-top partition of unity method and finite element method", Finite Elem. Anal. Des., 67, 43-55. https://doi.org/10.1016/j.finel.2012.12.002.   DOI
13 Hughes, T.J.R. (2000), The finite element method-Linear static and dynamic finite element analysis, Dover Publications, New York, U.S.A.
14 Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New York, U.S.A.
15 Kim, S., and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43. https://doi.org/10.1016/j.compstruc.2018.03.001.   DOI
16 Hyun, C., Boo, S.H., and Lee, P.S. (2020), "Improving the computational efficiency of the enhanced AMLS method", Comput. Struct., 228, 106158. https://doi.org/10.1016/j.compstruc.2019.106158.   DOI
17 Jeon, H.M., Lee, P.S., and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-42. https://doi.org/10.1016/j.compstruc.2013.12.003.   DOI
18 Jun, H., Yoon, K., Lee, P.S., and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Methods Appl. Mech. Eng., 337, 458-480. https://doi.org/10.1016/j.cma.2018.04.007.   DOI
19 Kim, J., and Bathe, K.J. (2013), "The finite element method enriched by interpolation covers", Comput. Struct., 116, 35-49. https://doi.org/10.1016/j.compstruc.2012.10.001.   DOI
20 Kim, J., and Bathe, K.J. (2014), "Towards a procedure to automatically improve finite element solutions by interpolation covers", Comput. Struct., 131, 81-97. https://doi.org/10.1016/j.compstruc.2013.09.007.   DOI
21 Kim, S., and Lee, P.S. (2019), "New enriched 3D solid finite elements: 8-node hexahedral, 6-node prismatic, and 5-node pyramidal elements", Comput. Struct., 216, 40-63. https://doi.org/10.1016/j.compstruc.2018.12.002.   DOI
22 Ko, Y., Lee, Y., Lee, P.S., and Bathe, K.J. (2017), "Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193,187-206. https://doi.org/10.1016/j.compstruc.2017.08.003.   DOI
23 Tian, R., Yagawa, G., and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Methods Appl. Mech. Eng., 195(37-40), 4768-82. https://doi.org/10.1016/j.cma.2005.06.030.   DOI
24 Lee, C., and Lee, P.S. (2018), "A new strain smoothing method for triangular and tetrahedral finite elements", Comput. Methods Appl. Mech. Eng., 341, 939-955. https://doi.org/10.1016/j.cma.2018.07.022.   DOI
25 Lee, C., and Lee, P.S. (2019), "The strain-smoothed MITC3+ shell finite element", Comput. Struct., 223, 106096. https://doi.org/10.1016/j.compstruc.2019.07.005.   DOI
26 Lee, Y., Lee, P.S., and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.   DOI
27 Oden, J.T., Duarte, C.A., and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Methods Appl. Mech. Eng., 153(1-2), 117-26. https://doi.org/10.1016/S0045-7825(97)00039-X.   DOI
28 Strouboulis, T., Babuska, I., and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Methods Appl. Mech. Eng., 181(1-3), 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9.   DOI
29 Yoon, K.H., Lee, Y.G., and Lee, P.S. (2012), "A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities", Struct. Eng. Mech., 43(4), 411-37. https://doi.org/10.12989/sem.2012.43.4.411.   DOI
30 Zhang, Q., Banerjee, U., and Babuska, I. (2014), "Higher order stable generalized finite element method", Numer. Math., 128(1), 1-29. https://doi.org/10.1007/s00211-014-0609-1.   DOI
31 Zienkiewicz, O.C. (1991), The finite element method, McCraw-Hil, New York, U.S.A.