Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.237

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm  

Hu, Wei (Livermore Software Technology Corporation)
Wu, C.T. (Livermore Software Technology Corporation)
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 237-255 More about this Journal
Abstract
In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.
Keywords
meshfree; finite element; nonlinear; near-incompressible; plasticity; contact;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arnold, D.N., Brezzi, F. and Franca, L.P. (1984), "A stable finite element for the Stokes equations", Calcolo, 21, 337-344.   DOI
2 Auricchio, F., Beirao de Veiga, L., Buffam, C., Lovadina, A., Reali, A. and Sangalli, G. (2007), "A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation", Comput. Meth. Appl. Mech. Eng., 197, 160-172.   DOI   ScienceOn
3 Bathe, K.J. (1996), Finite element procedures, Prentice-Hall, New Jersey.
4 Babuska, I. (1973), "The finite element method with Lagrangian multipliers", Numer. Math., 20, 179-192.   DOI   ScienceOn
5 Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Methods Eng., 40, 727-758.   DOI   ScienceOn
6 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256.   DOI   ScienceOn
7 Belytschko, T., Liu, W.K. and Moran, B. (2001), Nonlinear finite elements for continua and structures, (Third Ed.), John Wiley & Sons, New York.
8 Srinivasan, K.R., Matous, K. and Geubelle, P.H. (2008), "Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids", Comput. Meth. Appl. Mech. Eng., 197, 4882-4893.   DOI   ScienceOn
9 Stenberg, R. (1990), "Error analysis of some finite element methods for the Stokes problem", Math. Comput., 54, 495-508.   DOI   ScienceOn
10 Stevenson, A.C. (1943), "Some boundary problems of two-dimensional elasticity", Philos. Mag., 34, 766-793.   DOI
11 Vidal, Y., Villon, P. and Huerta, A. (2003), "Locking in the incompressible limit: pseudo-divergence-free element free Galerkin", Commun. Numer. Meth. Eng., 19, 725-735.   DOI   ScienceOn
12 Washizu, K. (1982), Variational Methods in Elasticity and Plasticity (3rd edn), Pergamon Press, New York.
13 Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2, 147-169.
14 Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized meshfree approximation for the meshfree analysis of solids", Comput. Meth. Appl. Mech. Eng., 85, 693-722.
15 Wu, C.T. and Hu, W. (2011), "Meshfree enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Meth. Appl. Mech. Eng., 200, 2991-3010.   DOI   ScienceOn
16 Wu, C.T. and Hu, W. (2012), "A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses", Comput. Mech., 50, 1-18.   DOI
17 Yang, B., Laursen, T.A. and Meng, X. (2005), "Two dimensional mortar contact methods for large deformation frictional sliding", Comput. Meth. Appl. Mech. Eng., 62, 1183-1225.
18 Zienkiewicz, O.C. and Taylor, R.L. (1987), The finite element method (third ed.), McGraw-Hill, London.
19 Liu, G.R. and Nguyen-Thoi, T. (2010), Smoothed finite element method, CRC Press, Boca Raton.
20 Liu, W.K., Ong, J.S.J. and Uras, R.A. (1986), "Finite element stabilization matrices-a unification approach", Comput. Meth. Appl. Mech. Eng., 53, 13-46.
21 Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Comput. Meth. Appl. Mech. Eng., 38, 1655-1679.
22 Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comput. Meth. Appl. Mech. Eng., 15, 63-81.   DOI   ScienceOn
23 Ortiz, A., Puso, M.A. and Sukumar, N. (2010), "Maximum-Entropy meshfree method for compressible and near-incompressible elasticity", Comput. Meth. Appl. Mech. Eng., 199, 1859-1871.   DOI   ScienceOn
24 Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation", Finite Elem. Anal. Des., 47, 683-697.   DOI   ScienceOn
25 Peen, R.W. (1970), "Volume changes accompanying the extension of rubber", Trans. Soc. Rheol., 14, 509-517.   DOI
26 Puso, M.A. and Laursen, T.A. (2004), "A mortar segment-to-segment contact method for large deformation solid mechanics", Comput. Meth. Appl. Mech. Eng., 193, 601-629.   DOI   ScienceOn
27 Puso, M.A. and Solberg, J. (2006), "A stabilized nodally integrated tetrahedral", Comput. Meth. Appl. Mech. Eng., 67, 841-867.
28 Rivlin, R.S. (1949), "Large elastic deformation of isotropic materials, Part VI, further results in the theory of torsion, shear and flexure", Philos. Trans. R. Soc. of London, A242, 173-195.
29 Simo, J.C. and Hughes, T. (1986), "On the variational foundation of assumed strain methods", ASME J. Appl. Mech., 53, 51-54.   DOI
30 Elguedj, T., Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), " B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements", Comput. Meth. Appl. Mech. Eng., 197, 2732-2762.   DOI   ScienceOn
31 Guo, Y., Ortiz, M., Belytschko, T. and Repetto, E.A. (2000), "Triangular composite finite elements", Comput. Meth. Appl. Mech. Eng., 47, 287-316.
32 Hauret, P., Kuhl, E. and Ortiz, M. (2007), "Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity", Comput. Meth. Appl. Mech. Eng., 72, 253-294.
33 He, Z.C., Liu, G.R., Zhong, Z.H., Wu, S.C., Zhang, G.Y. and Cheng, A.G. (2009), "An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems", Comput. Meth. Appl. Mech. Eng., 199, 20-33.   DOI   ScienceOn
34 Hu, W., Wu, C.T. and Koishi, M. (2012), "A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers", Finite Elem. Anal. Des., 50, 161-172.   DOI   ScienceOn
35 Hughes, T.J.R. (2000), The finite element method, Prentice-Hall: Englewood Cliffs, NJ.
36 Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195.   DOI   ScienceOn
37 Kikuchi, N. and Oden, J.T. (1988), Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia.
38 Krysl, P. and Zhu, B. (2008), "Locking-free continuum displacement finite elements with nodal integration", Comput. Meth. Appl. Mech. Eng., 76, 1020-1043.
39 Lamichhane, B.P. (2009), "Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity", IMA J. Numer. Anal., 29, 404-420.
40 Bonet, J. and Burton, A.J. (1998), "A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications", Commun. Numer. Meth. Eng., 14, 437-449.   DOI
41 Chen, L., Liu, G.R., Nourbakhsh-Nia, N. and Zeng, K. (2010), "A singular edge-based smoothed finite element method (ES-FEM) for biomaterial interface cracks", Comput. Mech., 45, 109-125.   DOI
42 Chen, J.S., Pan, C. and Wu, C.T. (1996), "A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory", J. Appl. Mech., 63, 862-868.   DOI   ScienceOn
43 Chen, J.S., Wu, C.T. and Pan, C. (1996), "A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications", J. Appl. Mech., 63, 869-876.   DOI   ScienceOn
44 Chen, J.S., Han, W., Wu, C.T. and Duan, W. (1997), "On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity", Comput. Meth. Appl. Mech. Eng., 142, 335-351.   DOI   ScienceOn
45 Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), "An improved reproducing kernel particle method for nearly incompressible finite elasticity", Comput. Meth. Appl. Mech. Eng., 181, 117-145.   DOI   ScienceOn
46 Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50, 435-466.   DOI   ScienceOn
47 De, S. and Bathe, K.J. (2001), "Displacement/pressure mixed interpolation in the method of finite spheres", Int. J. Numer. Meth. Eng., 51, 275-292.   DOI   ScienceOn
48 Dolbow, J. and Belytschko, T. (1999), "Volumetric locking in the element free Galerkin method", Int. J. Numer. Meth. Eng., 46, 925-942.   DOI
49 Dolbow, J. and Devan, A. (2004), "Enrichment of enhanced assumed strain approximations for representing strong discontinuities patch test", Int. J. Numer. Meth. Eng., 59, 47-67.   DOI   ScienceOn
50 Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 39, 237-262.
51 Andrade Pires, F.M., de Souza Neto, E.A. and de la Cuesta Padilla, J.L. (2004), "An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains", Int. J. Numer. Meth. Eng., 20, 569-583.