DOI QR코드

DOI QR Code

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Received : 2004.12.24
  • Accepted : 2005.10.21
  • Published : 2006.01.30

Abstract

A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Keywords

References

  1. Babuska, I., Szabo, B.A. and Katz, I.N. (1981), 'The p-version of the finite element method', SIAM Journal on Numerical Analysis, 18, 515-545 https://doi.org/10.1137/0718033
  2. Bardell, N.S. (1989), 'The application of symbolic computing to hierarchical finite element method', Int. J. Num. Meth. Eng., 28, 1181-1204 https://doi.org/10.1002/nme.1620280513
  3. Bardell, N.S. (1992), 'Free vibration analysis of a flat plate using the hierarchical finite element method', J. Sound Vib., 151, 263-289
  4. Bardell, N.S. (1992), 'The free vibration of skew plates using the hierarchical finite element method', Comput. Struct., 45(5), 841-874 https://doi.org/10.1016/0045-7949(92)90044-Z
  5. Barton, M.V. (1951), 'Vibration of rectangular and skew cantilever plates', ASME J. Appl. Mech., 18,129-134
  6. Cote, A. and Charron, F. (2001), 'On the selection of p-version shape functions for plate vibration problems', Compu. Struct., 79, 119-130 https://doi.org/10.1016/S0045-7949(00)00115-2
  7. Dokainish, M.A. and Rawtani, S. (1971), 'Vibration analysis of rotating cantilever plates', Int. J. Num. Meth. Eng., 3, 233-248 https://doi.org/10.1002/nme.1620030208
  8. Gordon, W.J. and Hall, C.A. (1973), 'Transfinite element methods: Blending-function interpolation over arbitrary curved element domains', Numer. Mathe, 21, 109-129 https://doi.org/10.1007/BF01436298
  9. Hamza-cherif, S.M. and Houmat, A. (2004), 'Natural frequencies of rotating flexible beams by using hierarchical finite element method', Proc. of 8th Pan. Amer. Cong. of Appl. Mech., Havana, 10, 101-104
  10. Houmat, A. (1997), 'An alternative hierarchical finite element method formulation applied to plate vibrations', J. Sound Vib., 206(2), 201-215 https://doi.org/10.1006/jsvi.1997.1076
  11. Houmat, A. (2001), 'A sector Fourier p-element applied to free vibration analysis of sector plates', J. Sound Vib., 243(2), 269-282 https://doi.org/10.1006/jsvi.2000.3410
  12. Kane, T., Ryan, R. and Banerjee, A. (1987), 'Dynamics of a cantilever beam attached to a moving base', J. of Guidance, Control and Dynamics, 10, 139-151 https://doi.org/10.2514/3.20195
  13. Langley, R.S. and Bardell, N.S. (1998), 'A review of current analysis capabilities applicable to the high frequency vibration prediction of aerospace structures', The Aeronautical Journal, 102, 287-297
  14. Leissa, A. (1974), 'On a curve veering', J of Applied Mathematics and Physics, 25, 99-111 https://doi.org/10.1007/BF01602113
  15. Meirovitch, L. and Baruh, H. (1983), 'On the inclusion principle for the hierarchical finite element method', Int. J. Num. Meth. Eng., 19, 281-291 https://doi.org/10.1002/nme.1620190209
  16. Putter, S. and Manor, H. (1967), 'Natural frequencies of radial rotating beams', J. Sound Vib., 56, 175-185 https://doi.org/10.1016/S0022-460X(78)80013-3
  17. Ramamurti, V. and Kielb, R. (1984), 'Natural frequencies of twisted rotating plates', J. Sound Vib., 97(3), 429-449 https://doi.org/10.1016/0022-460X(84)90271-2
  18. Southwell and Gough (1921), 'The free transverse vibration of airscrew blades', British A.R.C, Report and Memoranda, 655
  19. Szabo, B.A. and Sahrmann, G.J. (1988), 'Hierarchical plate and shells models based on p-extension', Int. J. Num. Meth. Eng., 26, 1855-1881 https://doi.org/10.1002/nme.1620260812
  20. Szabo, B.A. and Babuska, I. (1991), Finite Element Analysis, John Wiley & Sons. Inc., New York
  21. Yoo, H., Ryan, R. and Scott, R. (1995), 'Dynamics of flexible beams undergoing overall motions', J. Sound Vib., 10, 139-148
  22. Yoo, H. and Chung, J. (2001), 'Dynamics of rectangular plates undergoing prescribed overall motions', J. Sound Vib., 239, 123-137 https://doi.org/10.1006/jsvi.2000.3111
  23. Yoo, H. and Pierre, C. (2003), 'Modal characteristic of a rotating rectangular cantilever plate', J. Sound Vib., 259(1), 81-96 https://doi.org/10.1006/jsvi.2002.5182
  24. Zhu, D.C. (1986), 'Development of hierarchical finite element method at BIAA', Proc. of the Int. Conf. on Computational Mechanics, Tokyo, I, 123-128

Cited by

  1. Free vibration analysis of variable stiffness composite laminate plate with circular cutout 2017, https://doi.org/10.1080/14484846.2017.1385694
  2. Natural frequencies of thin plates by means of the finite element method using a conditioned conforming quadrilateral element vol.29, pp.5, 2008, https://doi.org/10.12989/sem.2008.29.5.599
  3. Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C1 HSDT vol.18, pp.4, 2016, https://doi.org/10.1177/1099636215603033
  4. Free Vibration Analysis of Rotating Mindlin Plates with Variable Thickness vol.17, pp.04, 2017, https://doi.org/10.1142/S0219455417500468
  5. Free vibration analysis of composite laminated and sandwich plate with circular cutout pp.1530-7972, 2018, https://doi.org/10.1177/1099636218811393
  6. Vibration analysis of variable stiffness laminated composite sandwich plates pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1524951
  7. Influence of various setting angles on vibration behavior of rotating graphene sheet: continuum modeling and molecular dynamics simulation vol.25, pp.5, 2006, https://doi.org/10.1007/s00894-019-3996-5
  8. Analytical solution for vibration characteristics of rotating graphene nanoplatelet-reinforced plates under rub-impact and thermal shock vol.29, pp.None, 2006, https://doi.org/10.1177/2633366x20933651
  9. Free vibration of composite laminated plate with complicated cutout vol.48, pp.2, 2006, https://doi.org/10.1080/15397734.2019.1633341