• 제목/요약/키워드: energy electronic state calculation

검색결과 35건 처리시간 0.021초

제1원리 분자궤도계산법에 의한 초기 spin 조건에 따른 $MnO_2$ 반도체의 전자상태 변화 계산 (Calculation on Electronic State of $MnO_2$ Oxide Semiconductor with other initial spin conditions by First Principle Molecular Orbital Method)

  • 이동윤;김봉서;송재성;김현식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.148-151
    • /
    • 2003
  • The spin density of ${\beta}-MnO_2$ structure was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}O_{56}]^{-52}$. The ${\beta}-MnO_2$ is a paramagnetic oxide semiconductor material having the energy band gap of 0.18 eV and an 3 loan-pair electrons in the 3d orbital of an cation. This material exhibits spin-only magnetism and has the magnetic ordering temperature of 94 K. Below this temperature its magnetism appears as antiferromagnetism. The calculations of electronic state showed that if the initial spin condition of input parameters changed, the magnetic state changed from paramagnetic to antiferromagnetic. When d orbital of all Mn atoms in cluster had same initial spin state as only up spin, paramagnetic spin density distribution appeared by the calculation. On the other way, d orbital had alternately changed spin state along special direction the resulted spin distribution showed antiferromagnetism.

  • PDF

제1원리 분자궤도계산법에 의한 $MnO_2$ 산화물 반도체의 전자상태에 미치는 불순물 첨가 효과의 계산 (Calculation on Effect of Impurity Addition on Electronic State of $MnO_2$ Oxide Semiconductor by First Principle Moleculat Orbital Method)

  • 이동윤;김봉서;송재성;김현식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.99-102
    • /
    • 2003
  • The electronic structure of ${\beta}-MnO_2$ having impurities in the site of Mn was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}MO_{56}]^{-52}$ (M = transient metals). Madelung potential and spin polarization were considered for more exact calculations. As results of calculations, the energy levels of all electron included in the model were obtained. The energy band gap and positions of impurity levies were discussed in association with impurity 34 orbital that seriously affect electrical properties of $MnO_2$. It was shown that the energy band gap decreased with the increase of the atomic number of transient metal impurity.

  • PDF

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

  • Feng, Bo;Lin, Hua
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1006-1017
    • /
    • 2015
  • This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

Electronic Structure of Ce-doped ZrO2 Film: Study of DFT Calculation and Photoelectron Spectroscopy

  • Jeong, Kwang Sik;Song, Jinho;Lim, Donghyuck;Kim, Hyungsub;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • 제25권1호
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we evaluated the change of electronic structure during redox process in cerium-doped $ZrO_2$ grown by sol gel method. By sol-gel method, we could obtain cerium-doped $ZrO_2$ in high oxygen partial pressure and low temperature. After post annealing process in nitrogen ambient, the film is deoxidized. We used spectroscopic and theoretical methods to analysis change of electronic structure. X-ray absorption spectroscopy (XAS) for O K1-edge and Density Functional Theory (DFT) calculation using VASP code were performed to verify the electronic structure of the film. Also, high resolution x-ray photoelectron spectroscopy (HRXPS) for Ce 3d was carried out to confirm chemical bond of cerium doped $ZrO_2$. Through the investigation of the electronic structure, we verified as followings. (1) During reduction process, binding energy of oxygen is increase. Simultaneously, oxidation state of cerium was change to 4+ to 3+. (2) Cerium 4+ and cerium 3+ states were generated at different energy level. (3) Absorption states in O K edge were mainly originated by Ce 4+ $f_0$ and Ce 3+, while occupied states in valance band were mainly originated from Ce 4+ $f_2$.

층상 구조를 가진 망간산화물의 전자구조 계산 (The Electronic Structure Calculation of Layered Mangan Oxides)

  • 박기택
    • 한국자기학회지
    • /
    • 제9권3호
    • /
    • pp.131-135
    • /
    • 1999
  • 층상 페로브스카이트형 구조를 가진 망간 산화물의 전자구조를 이해하기 위하여 단일 층상을 가진 LaSrMnO4의 전자구조를 제1원리의 국소 밀도 범함수 이론을 근거로 사용하는 Full Potential Linearized Augmented Plane Wave(FLAPW)방법으로 구하였다. 또한 홀 농도 변환에 따른 자기구조의 변화의 이해를 위해 Mn4+의 Sr2MnO4의 전자구조 계산을 행하여 전자구조를 비교하였다. 총에너지 계산 결과, LaSrMnO4는 면내의 반강자성 구조가 강자성 구조보다 더 낮은 에너지를 가지고 있었다. 또한, Mn-O 팔면체의 c축으로의 야안-텔러 왜곡(Jahn-Teller distortion)에 의해 에너지 갭이 나타나며, 이에 따른 3z2-r2 궤도 정렬에 의해 2차원 면내의 반강자성 상태가 안정됨을 볼 수 있었다.

  • PDF

Vibrational Analysis of Dopamine Neutral Bae based on Density Functional Force Field

  • 박선경;이남수;이상호
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.1035-1038
    • /
    • 2000
  • Vibrational properties of dopamine neutral species in powder state have been studied by means of the normal mode analysis based on the force constants obtained from the density functional calculation at B3LYP level and the results of Fourier trans form Raman and infrared spectroscopic measurements. Ab initio calculation at MP2 level shows that the trans conformer of dopamine has higher electronic energy about 1.4 kcal/mol than those of the gauche+ and the gauche-conformers, and two gauche conformers have almost the same energies. Free energies calculated at HF and B3LYP levels show very similar values for three conformers within 0.3 kcal/mol. Empirical force field has been constructed from force constants of three conformers, and refined upon ex-perimental Raman spectrum of dopamine to rigorous values. The major species of dopamine neutral base in the powder state is considered a trans conformer as shown in the crystallographic study of dopamine cationic salt.

블레이드 각속도 통계 정보 기반 풍력 발전기 고장 진단 모니터링 시스템 (Statistical Blade Angular Velocity Information-based Wind Turbine Fault Diagnosis Monitoring System)

  • 김병진;강석주;박준영
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.619-625
    • /
    • 2016
  • 본 논문에서는 풍력 발전 시스템에서 발생 가능한 고장 중 블레이드에 대한 고장 진단 방법으로 자이로 센서를 이용한 각속도 측정을 통해 고장 진단용 모니터링 시스템을 제안한다. 제안하는 방법은 우선 손상이 발생하지 않은 상태의 블레이드 회전에 대한 각속도 dataset을 구성한다. 블레이드 상태 판별을 위한 dataset 구성이 되었다면, 임의의 상태에 대한 블레이드가 부착된 풍력 발전기를 일정한 힘을 가해 회전시킨 후 최종적으로 블레이드의 손상 정도에 따라 발생하는 각속도의 차이를 비교하여 블레이드의 고장 진단에 대해 판단한다. 실험 결과 정상 상태의 블레이드는 초당 1회 (초당 $360^{\circ}$) 이상의 속도로 회전을 진행하며, 손상 상태의 블레이드는 초당 1회 미만의 속도로 회전하며 표준 편차가 급격히 증가하는 것을 확인할 수 있었다.

게이트 드라이버가 집적된 GaN 모듈을 이용한 48V-12V 컨버터의 설계 및 효율 분석 (Design and Efficiency Analysis 48V-12V Converter using Gate Driver Integrated GaN Module)

  • 김종완;최중묵;유세프알라브;제이슨라이
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.201-206
    • /
    • 2019
  • This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.

MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과 (Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2)

  • 이동윤;김봉서;송재성;김양수
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

On the Etching Mechanism of Parylene-C in Inductively Coupled O2 Plasma

  • Shutov, D.A.;Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.156-162
    • /
    • 2008
  • We report results on a study of inductively coupled plasma (ICP) etching of Parylene-C (poly-monochloro-para-xylylene) films using an $O_2$ gas. Effects of process parameters on etch rates were investigated and are discussed in this article from the standpoint of plasma parameter measurements, performed using a Langmuir probe and modeling calculation. Process parameters of interest include ICP source power and pressure. It was shown that major etching agent of polymer films was oxygen atoms O($^3P$). At the same time it was proposed that positive ions were not effective etchant, but ions played an important role as effective channel of energy transfer from plasma towards the polymer.