Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.4.1006

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application  

Feng, Bo (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology)
Lin, Hua (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology)
Publication Information
Journal of Power Electronics / v.15, no.4, 2015 , pp. 1006-1017 More about this Journal
Abstract
This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.
Keywords
AC/DC matrix converter; Battery energy storage system; Model predictive control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Wang, H. Lin, H. She, and B. Feng, “A research on space vector modulation strategy for matrix converter under abnormal input-voltage conditions,” IEEE Trans. Ind. Electron., Vol. 59 , No. 1 , pp. 93-104, Jan. 2012.   DOI
2 P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G. Franquelo, “Model predictive control of an inverter with output LC filter for UPS applications,” IEEE Trans. Ind. Electron., Vol. 56 , No. 6 , pp. 1875-1883, Jun. 2009.   DOI
3 P. Cortés, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu-Rub, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Trans. Ind. Electron., Vol. 57 , No. 8 , pp. 2691-2699, Aug. 2010.   DOI
4 C. Xia, T. Liu, T. Shi, and Z. Song, “A simplified finite-control-set model-predictive control for power converters,” IEEE Trans. Ind. Inform., Vol. 10 , No. 2 , pp. 991-1002, May 2014.   DOI
5 J. Hu, J. Zhu, G. Lei, G. Platt, and D. G. Dorrell, “Multi-objective model-predictive control for high-power converters,” IEEE Trans. Energy Convers., Vol. 28 , No. 3 , pp. 652-663, Sep. 2013.   DOI
6 T. Shi, C. Zhang, Q. Geng, and C. Xia, “Improved model predictive control of three-level voltage source converter,” Electric Power Components and Systems, Vol. 42 , No. 10 , pp. 1029-1038, Jun. 2014.   DOI
7 R. Vargas, J. Rodriguez, C. A. Rojas, and M. Rivera, “Predictive control of an induction machine fed by a matrix converter with increased efficiency and reduced common-mode voltage,” IEEE Trans. Energy Convers., Vol. 29 , No. 2 , pp. 473-485, Jun. 2014.   DOI
8 K. You and M. F. Rahman, “Analytical model of conduction and switching losses of matrix-Z-source converter,” Journal of Power Electronics, Vol. 9 , No. 2 , pp. 275-287, Mar. 2009.
9 S. A. Larrinaga, M. A. R. Vidal, E. Oyarbide, and J. R. T. Apraiz, “Predictive control strategy for DC/AC converters based on direct power control,” IEEE Trans. Ind. Electron., Vol. 54 , No. 3 , pp. 1261-1271, Jun. 2007.   DOI
10 X. Liu, Q. Zhang, and D. Hou, “One-cycle control strategy with active damping for an AC-DC matrix converter,” Journal of Power Electronics, Vol. 14, No. 4, pp. 778-787, Jul. 2014.   DOI
11 S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model predictive control – A simple and powerful method to control power converters,” IEEE Trans. Ind. Electron., Vol. 56 , No. 6 , pp. 1826-1838, Jun. 2009.   DOI
12 J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. Abu-Rub, H. A. Young, and C. A. Rojas, “State of the art of finite control set model predictive control in power electronics,” IEEE Trans. Ind. Informat., Vol. 9 , No. 2 , pp. 1003-1016, May 2013.   DOI
13 M. Rivera, J. Rodriguez, P. W. Wheeler, C. A. Rojas, A. Wilson, and J. R. Espinoza, “Control of a matrix converter with imposed sinusoidal source currents,” IEEE Trans. Ind. Electron., Vol. 59 , No. 4 , pp. 1939-1949, Apr. 2012.   DOI
14 K. You, D. Xiao, M. F. Rahman, and M. N. Uddin, “Applying reduced general direct space vector modulation approach of AC/AC matrix converter theory to achieve direct power factor controlled three-phase AC-DC matrix rectifier,” IEEE Trans. Ind. Appl., Vol. 50 , No. 3 , pp. 2243-2257, May 2014.   DOI
15 M. Rivera, C. Rojas, A. Wilson, J. Rodriguez, J. Espinoza, C. Baier, and J. Munoz, “Review of predictive control methods to improve the input current of an indirect matrix converter,” IET Power Electron., Vol. 7, No. 4, pp. 886-894, Apr. 2014.   DOI
16 P. Zavala, M. Rivera, S. Kouro, J. Rodriguez, B. Wu, V. Yaramasu, C. Baier, J. Munoz, J. Espinoza, and P. Melin, "Predictive control of a current source rectifier with imposed sinusoidal input currents," in Conf. IECON 2013, pp. 5842-5847, 2013.
17 Z. Zhang, F. Wang, T. Sun, J. Rodriguez, and R. Kennel, “FPGA based experimental investigation of a quasi-centralized DMPC scheme for a back-to-back converter,” IEEE Trans. Power Electron., to be published.
18 A. L. Julian and G. Oriti, “A novel clamp circuit for a regenerative rectifier using AC/AC matrix converter theory,” IEEE Trans. Ind. Appl., Vol. 41 , No. 1 , pp. 68-74, Jan. 2005.   DOI
19 S. Ratanapanachote, J. C. Han, and P. N. Enjeti, “A digitally controlled switch mode power supply based on matrix converter,” IEEE Trans. Power Electron., Vol. 21 , No. 1 , pp. 124-130, Jan. 2006.   DOI
20 R. Metidji, B. Metidji, and B. Mendil, “Design and implementation of a unity power factor fuzzy battery charger using an ultrasparse matrix rectifier,” IEEE Trans. Power Electron., Vol. 28 , No. 5 , pp. 2269-2276, May 2013.   DOI
21 L. Empringham, J. W. Kolar, J. Rodriguez, P. W. Wheeler, and J. C. Clare, “Technological issues and industrial application of matrix converters: a review,” IEEE Trans. Ind. Electron., Vol. 60 , No. 10 , pp. 4260-4271, Oct. 2013.   DOI
22 M. Su, H. Wang, Y. Sun, J. Yang, W. Xiong, and Y. Liu, “AC/DC matrix converter with an optimized modulation strategy for V2G applications,” IEEE Trans. Power Electron., Vol. 28 , No. 12 , pp. 5736-5745, Dec. 2013.   DOI
23 P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, “Matrix converters: a technology review,” IEEE Trans. Ind. Electron., Vol. 49 , No. 2 , pp. 276-288, Apr. 2002.   DOI
24 J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, “A review of control and modulation methods for matrix converters,” IEEE Trans. Ind. Electron., Vol. 59 , No. 1 , pp. 58-70, Jan. 2012.   DOI
25 Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, Vol. 5 , No. 2 , pp. 966-973, Mar. 2014.   DOI
26 S. Inoue and H. Akagi, “A bidirectional DC-DC converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., Vol. 22 , No. 6 , pp. 2299-2306, Nov. 2007.   DOI
27 D. G. Holmes and T. A. Lipo, “Implementation of a controlled rectifier using AC-AC matrix converter theory,” IEEE Trans. Power Electron., Vol. 7 , No. 1 , pp. 240-250, Jan. 1992.   DOI