• Title/Summary/Keyword: enantioselective

Search Result 202, Processing Time 0.027 seconds

Solvent-tolerant Lipases and Their Potential Uses (유기용매 내성 리파아제와 그 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1381-1392
    • /
    • 2017
  • This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

Prediction of the human in vivo antiplatelet effect of S- and R-indobufen using population pharmacodynamic modeling and simulation based on in vitro platelet aggregation test

  • Noh, Yook-Hwan;Han, Sungpil;Choe, Sangmin;Jung, Jin-Ah;Jung, Jin-Ah;Hwang, Ae-Kyung;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.160-165
    • /
    • 2018
  • Indobufen ($Ibustrin^{(R)}$), a reversible inhibitor of platelet aggregation, exists in two enantiomeric forms in 1:1 ratio. Here, we characterized the anti-platelet effect of S- and R-indobufen using response surface modeling using $NONMEM^{(R)}$ and predicted the therapeutic doses exerting the maximal efficacy of each enantioselective S- and R-indobufen formulation. S- and R-indobufen were added individually or together to 24 plasma samples from drug-naïve healthy subjects, generating 892 samples containing randomly selected concentrations of the drugs of 0-128 mg/L. Collagen-induced platelet aggregation in platelet-rich plasma was determined using a Chrono-log Lumi-Aggregometer. Inhibitory sigmoid $I_{max}$ model adequately described the anti-platelet effect. The S-form was more potent, whereas the R-form showed less inter-individual variation. No significant interaction was observed between the two enantiomers. The anti-platelet effect of multiple treatments with 200 mg indobufen twice daily doses was predicted in the simulation study, and the effect of S- or R-indobufen alone at various doses was predicted to define optimal dosing regimen for each enantiomer. Simulation study predicted that 200 mg twice daily administration of S-indobufen alone will produce more treatment effect than S-and R-mixture formulation. S-indobufen produced treatment effect at lower concentration than R-indobufen. However, inter-individual variation of the pharmacodynamic response was smaller in R-indobufen. The present study suggests the optimal doses of R-and S-enantioselective indobufen formulations in terms of treatment efficacy for patients with thromboembolic problems. The proposed methodology in this study can be applied to the develop novel enantio-selective drugs more efficiently.

The Chirality Conversion Reagent for Amino Acids Based on Salicyl Aldehyde

  • Yoon, Hoe-Jin;Jung, Hein;Ahn, Yun-Soo;Nandhakumar, Raju;Kim, Jun-Soo;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1715-1718
    • /
    • 2012
  • 2-Hydroxy-6-(1-(3-phenylurylphenyl)ethoxy)-benzaldehyde ($\mathbf{2}$) has been synthesized in racemic form from 1,3-Dihydroxybenzene via formylation and reaction with 3-phenyluryl-methylbenzylbromide. The optically pure form of $\mathbf{2}$ was separated by normal silica column chromatography from the imine diastreomer which was obtained by the reaction of racemic mixture of $\mathbf{2}$ with optically pure leucinol. The absolute configuration of the separated enantiomer of $\mathbf{2}$ was decided from the energy calculation of the corresponding imine diastereomers. The activity of $\mathbf{2}$ as a chirality conversion reagent (CCR) for amino acids was determined by $^1H$ NMR analysis. The efficiency of $\mathbf{2}$ is not better than the previous CCRs based on binaththol. Compound $\mathbf{2}$, however, has lower molecular weight compared to other CCRs. This work demonstrates that asymmetric carbon can control the selectivity of amino acids.

Cyclodextrin의 사용과 pH의 변화를 이용한 Levofloxacin 생산 증대 연구

  • Mun, Ji-Suk;No, Yun-Suk;O, Seon-Yeong;Jang, Seong-Jae;Im, Sang-Min;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.662-665
    • /
    • 2001
  • Enantioselective production of levofloxacin from ofloxacin butyl ester by porcine liver esterase was enhanced with the addition of ${\alpha}$-cyclodextrin(${\alpha}-CD$) and pH change. The conversion yield was increased from 27 to 64% and 100% with 150 mM substrate when the molar ratio of ${\alpha}-CD$ to substrate was 1 and 2, respectively. When 100 mM of substrate was added with the same molar ratio of ${\alpha}-CD$ at pH 5.6, the solubility was increased 3.8 times and the conversion yield was increased 4.4 times.

  • PDF

Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems

  • Lee, Seon-Hwa;Blair, Ian A.
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.401-410
    • /
    • 2009
  • We have developed a targeted lipidomics approach that makes it possible to directly analyze chiral eicosanoid lipids generated in cellular systems. The eicosanoids, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and alcohols (HETEs), have been implicated as potent lipid mediators of various biological processes. Enzymatic formations of eicosanoids are regioselective and enantioselective, whereas reactive oxygen species (ROS)-mediated formation proceeds with no stereo-selectivity. To distinguish between enzymatic and non-enzymatic pathways of eicosanoid formation, it is necessary to resolve enantiomeric forms as well as regioisomers. High sensitivity is also required to analyze the eicosanoid lipids that are usually present as trace amounts (pM level) in biological fluids. A discovery of liquid chromatography-electron capture atmospheric pressure chemical ionization/mass spectrometry (LC-ECAPCI/MS) allows us to couple normal phase chiral chromatography without loss of sensitivity. Analytical specificity was obtained by the use of collision-induced dissociation (CID) and tandem MS (MS/MS). With combination of stable isotope dilution methodology, complex mixtures of regioisomeric and enantiomeric eicosanoids have been resolved and quantified in biological samples with high sensitivity and specificity. Targeted chiral lipidomics profiles of bioactive eicosanoid lipids obtained from various cell systems and their biological implications have been discussed.

UV Spectrometric Assay of Epoxide Hydrolase Activity of Microbial Cell Biocatalysts (자외선분광기를 이용한 미생물 세포 생촉매의 에폭사이드 가수분해효소 활성평가)

  • Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.456-459
    • /
    • 2005
  • UV spectrometric assay for measurement of epoxide hydrolase activity was tested for efficient screening of whole cell activity of epoxide hydrolase. Epoxide hydrolase activities were determined by measuring the amount of p-nitrostyrene diol (pNSD), which was the hydrolysis product of p-nitrostyrene oxide (pNSO). Enantioselective hydrolysis of racemic pNSO using epoxide hydrolase activity of Rhodosporidium toruloides was monitored by UV spectrometric assay, and the relevant $K_m$ and $V_m$ for R. toruloides were determined as $2.457nmol/min{\cdot}mg$ and 1.078 mM, respectively.

Electrochemical and Raman Spectroscopy Analysis for D- and L-Tryptophan-b-Cyclodextrin Inclusion Complexes

  • Jeong, Yu-Ra;Lee, So-Ra;Son, Pyeong-Soo;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.451-460
    • /
    • 2015
  • An enantioselective recognition of D- and L-tryptophan (Trp)-b-cyclodextrin (CD) inclusion complex was performed using electrochemical and FT-Raman spectroscopic analysis. From the electrochemical analysis, the selectivity coefficient ($K_{DL}$) of b-CD inclusion complexes was found higher than that of the D- and L-Trp in phosphate buffered saline (PBS, pH=7.0) solution. The percentage of enantioselectivity ($I_{%{ee}}$) for peak current of D-Trp-b-CD inclusion complexes was observed higher than that of L-Trp-b-CD inclusion complexes in PBS solution. From Raman spectroscopy, chemical shift difference (D, $cm^{-1}$) for the C=C stretch, ring vibration, and ring breathing of D-Try-b-CD inclusion complex were observed higher than that of L-Trp-b-CD inclusion complex. The electrochemical and Raman spectroscopic analyses were found very useful for chiral detection of racemic amino acid in the presence of b-CD.

Enantioselective Pharmacokinetics of Carvedilol in Human Volunteers

  • Phuong, Nuyen-Thi;Lee, Beam-Jin;Choi, Jung-Kap;Kang, Jong-Seong;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.973-977
    • /
    • 2004
  • Carvedilol is administered as a racemic mixture of the R(+)- and S(-)-enantiomers, although they exhibit different pharmacological effects. To investigate the stereoselective pharmacoki-netics, the enantiomeric separation of carvedilol in human plasma was undertaken using capil-lary electrophoresis (CE). Resolution of the enantiomers was achieved using 2-hydoxypropyl-$\beta$-cyclodextrin as the chiral selector. Phosphate buffer (50 mM, pH 4.0) containing 10 mM of 2-hydoxypropropyl-$\beta$-cyclodextrin was used as electrolytic buffer. Achiral separation was carried out with the same electrolytic buffer without chiral selector. Following a single oral administra-tion of 25-mg carvedilol to 11 healthy, male volunteers, stereoselective pharmacokinetic analy-sis was undertaken. The maximum plasma concentrations ( $C_{max}$) were 48.9 and 21.6 ng/mL for (R)-carvedilol and (S)-carvedilol, respectively, determined by the chiral method. The profiles of the plasma concentration of (RS)-carvedilol showed $C_{max}$ of 71.5, 72.2, and 73.5 ng/mL, as determined by the CE, HPLC/FD methods and calculations from the data of the chiral method, respectively.y.y.

Dynamic Kinetic Resolutions and Asymmetric Transformations by Enzyme-Metal Combo Catalysis

  • Kim, Mahn-Joo;Ahn, Yang-Soo;Park, Jai-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.515-522
    • /
    • 2005
  • Enzyme-metal combo catalysis is described as a useful methodology for the synthesis of optically active compounds. The key point of the method is the use of enzyme and metal in combination as the catalysts for the complete transformation of racemic substrates to single enantiomeric products through dynamic kinetic resolution (DKR). In this approach, enzyme acts as an enantioselective resolving catalyst and metal does as a racemizing catalyst for the efficient DKR. Three kinds of enzyme-metal combinations - lipase-ruthenium, subtilisin-ruthenium, and lipase-palladium –have been developed as the catalysts for the DKRs of racemic alcohols, esters, and amines. The scope of the combination catalysts can be extended to the asymmetric transformations of ketones, enol acetates, and ketoximes via the DKRs. In most cases studied, enzyme-metal combo catalysis provided enantiomerically-enriched products in high yields.

Reduction of m-Bromonitrobenzene and Nitrosobenzene with Bakers' Yeast (Bakers' Yeast를 이용한 m-Bromonitrobenzene 및 Nitrosobenzene의 환원반응)

  • Kim, Kyungsoon;Baik, Woonphil;Oh, Sunghwan
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.10
    • /
    • pp.812-817
    • /
    • 1995
  • Rapid and selective reduction of aromatic nitro compounds is of important for the preparation of amino derivertives in organic synthesis, particularly when a molecule has other reducible substituents. While Bakers' Yeast has been used for the enantioselective reduction of carbonyl compounds, little attention has been paid to the reduction of aromatic nitro compounds with Bakers' Yeast. Nitro group of m-bromonitrobenzene was selectively and rapidly reduced to corresponding amino derivative in good yield by Bakers' Yeast in basic solution. Furthermore, nitrosobenzene was rapidly reduced to aniline in good yield by Bakers' Yeast under neutral condition. In this paper, we wish to report a rapid and simple reduction of m-bromonitrobenzene and nitrosobenzene to the corresponding amino derivatives using Bakers' Yeast. And the effects of various agents, temperature and pH on the reduction will be discussed.

  • PDF