DOI QR코드

DOI QR Code

Electrochemical and Raman Spectroscopy Analysis for D- and L-Tryptophan-b-Cyclodextrin Inclusion Complexes

  • Received : 2015.07.28
  • Accepted : 2015.09.10
  • Published : 2015.09.30

Abstract

An enantioselective recognition of D- and L-tryptophan (Trp)-b-cyclodextrin (CD) inclusion complex was performed using electrochemical and FT-Raman spectroscopic analysis. From the electrochemical analysis, the selectivity coefficient ($K_{DL}$) of b-CD inclusion complexes was found higher than that of the D- and L-Trp in phosphate buffered saline (PBS, pH=7.0) solution. The percentage of enantioselectivity ($I_{%{ee}}$) for peak current of D-Trp-b-CD inclusion complexes was observed higher than that of L-Trp-b-CD inclusion complexes in PBS solution. From Raman spectroscopy, chemical shift difference (D, $cm^{-1}$) for the C=C stretch, ring vibration, and ring breathing of D-Try-b-CD inclusion complex were observed higher than that of L-Trp-b-CD inclusion complex. The electrochemical and Raman spectroscopic analyses were found very useful for chiral detection of racemic amino acid in the presence of b-CD.

Keywords

References

  1. E. Yashima and K. Maeda, Chirality-Responsive Helical Polymers, Macromolecules, 41, 3 (2008). https://doi.org/10.1021/ma071453s
  2. T. Q. Yan and C. Orihuela, Rapid and high throughput separation technologies-Steady state recycling and supercritical fluid chromatography for chiral resolution of pharmaceutical intermediates, J. Chromatogr. A, 1156, 220 (2007). https://doi.org/10.1016/j.chroma.2007.03.124
  3. L. Zhang, M. Song, Q. Tian, and S. Min, Chiral separation of l,d-tyrosine and l,d-tryptophan by ct DNA, Sep. Purif. Technol., 55, 388 (2007). https://doi.org/10.1016/j.seppur.2006.12.016
  4. Z.-X. Zheng, J.-M. Lin, and F. Qu, Chiral separation of underivatized and dansyl amino acids by ligand-exchange micellar electrokinetic capillary chromatography using a copper(II)-L-valine complex as selector, J. Chromatogr. A, 1007, 189 (2003). https://doi.org/10.1016/S0021-9673(03)00960-9
  5. X. Lu, Y. Chen, L. Guo, and Y. Yang, Chiral separation of underivatized amino acids by ligand-exchange capillary electrophoresis using a copper(II)-L-lysine complex as selector, J. Chromatogr. A, 945, 249 (2002). https://doi.org/10.1016/S0021-9673(01)01494-7
  6. Elek, D. Mangelings, T. Ivanyi, I. Lazar, and Y. V. Heyden, Enantioselective capillary electrophoretic separation of tryptophane- and tyrosine-methylesters in a dual system with a tetra-oxadiaza-crown-ether derivative and a cyclodextrin, J. J. Pharm. Biomed. Anal., 38, 601 (2005). https://doi.org/10.1016/j.jpba.2005.02.014
  7. L. Qi, G. Yangd, H. Zhang, and J. Qiao, A chiral ligand exchange CE essay with zinc(II)-l-valine complex for determining enzyme kinetic constant of l-amino acid oxidase, Talanta, 81,1554 (2010). https://doi.org/10.1016/j.talanta.2010.03.001
  8. L. Chi, J. Zhao, and T. D. James, Chiral mono boronic acid as fluorescent enantioselective sensor for mono ${\alpha}$-hydroxyl carboxylic acids, J. Org. Chem., 73, 4684 (2008). https://doi.org/10.1021/jo8007622
  9. Chiral discrimination between d- and l-tryptophan based on the alteration of the fluorescence lifetimes by the chiral additives, Yanli Wei, Sufang Wang, Shaomin Shuang, and Chuan Dong, Talanta, 81, 1800-1805 (2010). https://doi.org/10.1016/j.talanta.2010.03.044
  10. F. Liu, X. Liu, S.-C. Ng, and H. S.-O. Chan, Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan, Sens. Actuators B, 113, 234 (2006). https://doi.org/10.1016/j.snb.2005.02.058
  11. H.-S. Guoa, J.-M. Kim, S.-M. Chang, and W.-S. Kim, Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance, Biosens. Bioelectron., 24, 2931 (2009). https://doi.org/10.1016/j.bios.2009.02.002
  12. T. Stalina, K. Srinivasana, K. Sivakumar, and S. Radhakrishnan, Preparation and characterizations of solid/aqueous phases inclusioncomplex of 2,4-dinitroaniline with b-cyclodextrin, Carbohydr. Polym., 107, 72 (2014). https://doi.org/10.1016/j.carbpol.2014.01.091
  13. N. Rajendiran, G. Venkatesh, and R.K. Sankaranarayanan, Encapsulation of thiazolyazoresorcinol and thiazolyazocresol dyes with a- and b-cyclodextrin cavities: Spectral and molecular modeling studies, J. Mol. Struct., 1072, 242 (2014). https://doi.org/10.1016/j.molstruc.2014.05.018
  14. J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev., 98, 1743 (1998). https://doi.org/10.1021/cr970022c
  15. A. D. Bani-Yaseen and A. Mo'ala, Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in b-cyclodextrin nano-cavity, Spectrochim. Acta, Part A, 131, 424 (2014). https://doi.org/10.1016/j.saa.2014.04.136
  16. Z. Li, S. Chen, Z. Gu, J. Chen and J. Wu, Alpha-cyclodextrin: Enzymatic production and food applications, Trends Food Sci. Technol., 35, 151 (2014). https://doi.org/10.1016/j.tifs.2013.11.005
  17. W. Misiuk and M. Zalewska, Spectroscopic investigations on the inclusion interaction between hydroxypropyl-${\beta}$-cyclodextrin and bupropion, J. Mol. Liq., 159, 220 (2011). https://doi.org/10.1016/j.molliq.2011.01.014
  18. C. Jullian, J. Morales-Montecinos, G. Zapata-Torres, B. Aguilera, J. Rodriguez, V. Aran, and C. Olea-Azar, Characterization, phase-solubility, and molecular modeling of inclusion complex of 5-nitroindazole derivative with cyclodextrins, Bioorg. Med. Chem., 16, 5078 (2008). https://doi.org/10.1016/j.bmc.2008.03.026
  19. S.-H. Choi, E.-N. Ryu, J. J. Ryoo, and K.-P. Lee, FT-Raman Spectra of o-, m-, and p-Nitrophenol Included in Cyclodextrins, J. Inclusion Phenom. Macrocyclic Chem., 40, 271 (2001). https://doi.org/10.1023/A:1012703615268
  20. S.-H. Choi, S.-Y. Kim, J. J. Ryoo, and K.-P. Lee, Complexation of the Non-steroidal Anti-inflammatory Drug Loxoprofen with Modified and Unmodified ${\beta}$-Cyclodextrins, J. Inclusion Phenom. Macrocyclic Chem., 40, 139 (2001). https://doi.org/10.1023/A:1011175206514
  21. S.-H. Choi, J.-W. Seo, S.-I. Nam, M.-S. Lee, and K.-P. Lee, FT-Raman Spectra of 2-, 3-, and 4-Chlorostyrene Molecules Included in Cyclodextrins, J. Inclusion Phenom. Macrocyclic Chem., 40, 279 (2001). https://doi.org/10.1023/A:1012728301383
  22. G. qing, T. Sun, Z. Cehn, X. Yang, X. Wu, and Y. He, 'Naked-Eye' Enantioselective Chemosensors for N-Protected Amino Acid Anions Bearing Thiourea Units, Chirality, 21, 363 (2009). https://doi.org/10.1002/chir.20593
  23. S.-Z. Kang, H. Chen, X. Li, and J. Mu, Preparation of l-alanine ethyl ester modified multiwalled carbon nanotubes and their chiral discrimination between dand l-tryptophan, Diamond Relat. Mater., 19, 1221 (2010). https://doi.org/10.1016/j.diamond.2010.06.014
  24. J.-B. Raoof, R. Ojani, and H. Karimi-Maleh, Carbon Paste Electrode Incorporating 1-[4-(Ferrocenyl Ethynyl) Phenyl]-1-Ethanone for Electrocatalytic and Voltammetric Determination of Tryptophan, Electroanalysis, 20, 1259 (2008). https://doi.org/10.1002/elan.200704176
  25. G. K. Budnikov, G. A. Evtyugin, Y. G. Budnikova, and V. A. Al'fonsov, Chemically modified electrodes with amperometric response in enantioselective analysis, Journal of Analytical Chemistry, 63, 2 (2008). https://doi.org/10.1134/S1061934808010024