DOI QR코드

DOI QR Code

Dynamic Kinetic Resolutions and Asymmetric Transformations by Enzyme-Metal Combo Catalysis

  • Kim, Mahn-Joo (National Research Laboratory of Chirotechnology and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Ahn, Yang-Soo (National Research Laboratory of chirotechnology and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Park, Jai-Wook (National Research Laboratory of chirotechnology and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Published : 2005.04.20

Abstract

Enzyme-metal combo catalysis is described as a useful methodology for the synthesis of optically active compounds. The key point of the method is the use of enzyme and metal in combination as the catalysts for the complete transformation of racemic substrates to single enantiomeric products through dynamic kinetic resolution (DKR). In this approach, enzyme acts as an enantioselective resolving catalyst and metal does as a racemizing catalyst for the efficient DKR. Three kinds of enzyme-metal combinations - lipase-ruthenium, subtilisin-ruthenium, and lipase-palladium –have been developed as the catalysts for the DKRs of racemic alcohols, esters, and amines. The scope of the combination catalysts can be extended to the asymmetric transformations of ketones, enol acetates, and ketoximes via the DKRs. In most cases studied, enzyme-metal combo catalysis provided enantiomerically-enriched products in high yields.

Keywords

References

  1. Sheldon, R. A. Chirotechnology, Industrial Synthesis of Optically Active Compounds; Dekker: New York, 1993
  2. Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry; Pergamon: Oxford, UK, 1994
  3. Koskinen, A. M. P.;Klibanov, A. M. Enzymatic Reactions in Organic Media; Blackie Academic & Professional: Glasgow, Scotland, 1996
  4. Faber, K. Biotransformations in Organic Chemistry, 3rd ed.; Springer: Berlin, Germany, 1997
  5. Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis; Wiley-VCH: Weiheim, Germany, 1999
  6. Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2002; Vols. I-III
  7. Kim, M.-J.; Choi, G.-B.; Kim, J.-J.; Kim, H. J. Tetrahedron Lett. 1995, 36, 6253 https://doi.org/10.1016/0040-4039(95)01237-C
  8. Kim, M.-J.; Lim, I.-T. Synlet 1996, 138
  9. Kim, M.-J.; Lim, I.-T.; Choi, G.-B.; Whang, S.-Y.; Ku, B.-C.; Choi, J.-Y. Bioorg. Med. Chem. Lett. 1996, 6, 71 https://doi.org/10.1016/0960-894X(95)00550-D
  10. Kim, M.-J.; Lim, I. T.; Kim, H.-J.; Wong, C.-H. Tetrahedron: Asymmetry 1997, 8, 1507 https://doi.org/10.1016/S0957-4166(97)00139-0
  11. Lee, D.; Kim, M.-J. Tetrahedron Lett. 1998, 39, 2163 https://doi.org/10.1016/S0040-4039(98)00147-6
  12. Chung, S.-K.; Chang, Y.-T.; Lee, E. J.; Shin, B.-G.; Kwon, Y.-U.; Kim, K.-C.; Lee, D. H.; Kim, M.-J. Bioorg. Med. Chem. Lett. 1998, 8, 1503 https://doi.org/10.1016/S0960-894X(98)00245-5
  13. Lee, D.; Kim, M.-J. Tetrahedron Lett. 1998, 39, 9039 https://doi.org/10.1016/S0040-4039(98)02049-8
  14. Lee, D.; Kim, M.-J. Org. Lett. 1999, 1, 925 https://doi.org/10.1021/ol990179m
  15. Im, A. S.; Cheong, C. S.; Lee, S. H. Bull. Korean Chem. Soc. 2003, 24, 1269 https://doi.org/10.5012/bkcs.2003.24.9.1269
  16. Kang, H.-Y.; Ji, Y.; Yu, Y.-K.; Yu, J.-Y.; Lee, Y.; Lee, S.-J. Bull. Korean Chem. Soc. 2003, 24, 1819 https://doi.org/10.5012/bkcs.2003.24.12.1819
  17. Ward, R. S. Tetrahedron: Asymmetry 1995, 6, 1475 https://doi.org/10.1016/0957-4166(95)00179-S
  18. Stürmer, R. Angew. Chem. Int. Ed. Engl. 1997, 36, 1173 https://doi.org/10.1002/anie.199711731
  19. El Gihani, M. T.; Williams, J. M. J. Curr. Opin. Biotechnol. 1999, 3, 11 https://doi.org/10.1016/S1367-5931(99)80003-9
  20. Azerad, R.; Buisson, D. Curr. Opin. Biotechnol. 2000, 11, 565 https://doi.org/10.1016/S0958-1669(00)00144-0
  21. Huerta, F. F.; Minidis, A. B. E.; Backvall, J.-E. Chem. Soc. Rev. 2001, 30, 321 https://doi.org/10.1039/b105464n
  22. Kim, M.-J.; Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578 https://doi.org/10.1016/S0958-1669(02)00347-6
  23. Pellissier, H. Tetrahedron 2003, 59, 8291 https://doi.org/10.1016/S0040-4020(03)01022-6
  24. Pamies, O.; Backvall, J.-E. Chem. Rev. 2003, 103, 3247 https://doi.org/10.1021/cr020029g
  25. Pàmies, O.; Backvall, J.-E. Curr. Opin. Biotechnol. 2003, 14, 407 https://doi.org/10.1016/S0958-1669(03)00097-1
  26. Turner, N. J. Curr. Opin. Chem. Biol. 2004, 8, 114 https://doi.org/10.1016/j.cbpa.2004.02.001
  27. Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37, 1859 https://doi.org/10.1016/0040-4039(96)00136-0
  28. Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.; Harris, W. Tetrahedron Lett. 1996, 37, 7623 https://doi.org/10.1016/0040-4039(96)01677-2
  29. Reetz, M. T.; Schimossek, K. Chimia 1996, 50, 668
  30. Choi, J. H.; Kim, Y. H.; Nam, S. H.; Shin, S. T.; Kim, M.-J.; Park, J. Angew. Chem. Int. Ed. Engl. 2002, 41, 2373 https://doi.org/10.1002/1521-3773(20020703)41:13<2373::AID-ANIE2373>3.0.CO;2-7
  31. Larsson, A. L. E.; Persson, B. A.; Backvall, J.-E. Angew. Chem. Int. Ed. Engl. 1997, 36, 1211 https://doi.org/10.1002/anie.199712111
  32. Persson, B. A.; Larsson, A. L. E.; Ray, M. L.; Backvall, J.-E. J. Am. Chem. Soc. 1999, 121, 1645 https://doi.org/10.1021/ja983819+
  33. Lee, H. K.; Ahn, Y. Bull. Korean Chem. Soc. 2004, 25, 1471 https://doi.org/10.5012/bkcs.2004.25.10.1471
  34. Koh, J. H.; Jeong, H. M.; Kim, M.-J.; Park, J. Tetrahedron Lett. 1999, 40, 6281 https://doi.org/10.1016/S0040-4039(99)01237-X
  35. Lee, D.; Huh, E. A.; Kim, M.-J.; Jung, H. M.; Koh, J. H.; Park, J. Org. Lett. 2000, 2, 2377 https://doi.org/10.1021/ol006159y
  36. Kim, K. W.; Song, B.; Choi, M. Y.; Kim, M.-J. Org. Lett. 2001, 3, 1507 https://doi.org/10.1021/ol015824f
  37. Lee, J. K.; Kim, M.-J. J. Org. Chem. 2002, 67, 6845 https://doi.org/10.1021/jo026116q
  38. Kim, M.-J.; Choi, M. Y.; Lee, J. K.; Ahn, Y. J. Mol. Catal. B.: Enzym. 2003, 26, 115 https://doi.org/10.1016/j.molcatb.2003.04.001
  39. Erbeldinger, M.; Mesiano, A. J.; Russel, A. Biotechnol. Prog. 2000, 16, 1129 https://doi.org/10.1021/bp000094g
  40. Lau, R. M.; Rantwijk, F. van; Seddon, K. R.; Sheldon, R. A. Org. Lett. 2000, 2, 4189 https://doi.org/10.1021/ol006732d
  41. Itoh, T.; Akasaki, E.; Kudo, K.; Shirakami, S. Chem. Lett. 2001, 262
  42. Schoefer, S. H.; Kraftzik, N.; Wasserscheid, P.; Kragl, U. Chem. Commun. 2001, 425
  43. Park, S.; Kazlauskas, R. J. Org. Chem. 2001, 66, 8395 https://doi.org/10.1021/jo015761e
  44. Kim, M.-J.; Kim, H. M.; Kim, D.; Ahn, Y.; Park, J. Green Chem. 2004, 6, 471 https://doi.org/10.1039/b405651e
  45. Choi, J. H.; Choi, Y. K.; Kim, Y. H.; Park, E. S.; Kim, E. J.; Kim, M.-J.; Park, J. J. Org. Chem. 2004, 69, 1972 https://doi.org/10.1021/jo0355799
  46. Csjernyik, G.; Bogar, K.; Backvall, J.-E. Tetrahedron Lett. 2004, 45, 6799 https://doi.org/10.1016/j.tetlet.2004.07.013
  47. Martin-Matute, B.; Edin, M.; Bogar, K.; Backvall, J.-E. Angew. Chem. Int. Ed. 2004, 43, 6535 https://doi.org/10.1002/anie.200461416
  48. Dijksman, A.; Elzinga, J. M.; Li, Y. X.; Arends, W. C. E.; Sheldon, R. A. Tetrahedron: Asymmetry 2002, 13, 879 https://doi.org/10.1016/S0957-4166(02)00187-8
  49. Persson, B. A.; Huerta, F. F.; Backvall, J.-E. J. Org. Chem. 1999, 64, 5237 https://doi.org/10.1021/jo990447u
  50. Edin, M.; Backvall, J.-E. J. Org. Chem. 2003, 68, 2216 https://doi.org/10.1021/jo026652i
  51. Huerta, F. F.; Laxmi, S. Y. R.; Backvall, J.-E. Org. Lett. 2000, 2, 1037 https://doi.org/10.1021/ol000014+
  52. Runmo, A. B. L.; Pàmies, O.; Faber, K.; Backvall, J.- E. Tetrahedron Lett. 2002, 43, 2983 https://doi.org/10.1016/S0040-4039(02)00418-5
  53. Pamies, O.; Backvall, J.- E. J. Org. Chem. 2002, 67, 1261 https://doi.org/10.1021/jo016096c
  54. Pamies, O.; Backvall, J.-E. J. Org. Chem. 2001, 66, 4022 https://doi.org/10.1021/jo015579d
  55. Kim, M.-J.; Choi, Y. K.; Choi, M. Y.; Kim, M.; Park, J. J. Org. Chem. 2001, 66, 4736 https://doi.org/10.1021/jo0156417
  56. Pamies, O.; Backvall, J.-E. Adv. Synth. Catal. 2001, 343, 726 https://doi.org/10.1002/1615-4169(200108)343:6/7<726::AID-ADSC726>3.0.CO;2-E
  57. Pamies, O.; Backvall, J.-E. J. Org. Chem. 2002, 67, 9006 https://doi.org/10.1021/jo026157m
  58. Pamies, O.; Backvall, J.-E. J. Org. Chem. 2003, 68, 4815 https://doi.org/10.1021/jo026888m
  59. Kim, M.-J.; Chung, Y. I.; Choi, Y. K.; Lee, H. K.; Kim, D.; Park, J. J. Am. Chem. Soc. 2003, 125, 11494 https://doi.org/10.1021/ja036766r
  60. Choi, Y. K.; Suh, J. H.; Lee, D.; Lim, I. T.; Jung, J. Y.; Kim, M.-J. J. Org. Chem. 1999, 64, 8423 https://doi.org/10.1021/jo990956w
  61. Pamies, O.; Ell, A. H.; Samec, J. S. M.; Hermanns, N.; Backvall, J.-E. Tetrahedron Lett. 2002, 43, 4699 https://doi.org/10.1016/S0040-4039(02)00817-1
  62. Jung, H. M.; Koh, J. H.; Kim, M.-J.; Park, J. Org. Lett. 2000, 2, 409 https://doi.org/10.1021/ol9914043
  63. Jung, H. M.; Koh, J. H.; Kim, M.-J.; Park, J. Org. Lett. 2000, 2, 2487 https://doi.org/10.1021/ol006169z
  64. Kim, M.-J.; Choi, M. Y.; Han, M. Y.; Choi, Y. K.; Lee, J. K.; Park, J. J. Org. Chem. 2002, 67, 9481
  65. Choi, Y. K.; Kim, M.; Ahn, Y.; Kim, M.-J. Org. Lett. 2001, 3, 4099 https://doi.org/10.1021/ol0168622
  66. Kim, W.-H.; Karvembu, R.; Park, J. Bull. Korean Chem. Soc. 2004, 25, 931 https://doi.org/10.5012/bkcs.2004.25.6.931

Cited by

  1. Air-Stable Racemization Catalyst for Dynamic Kinetic Resolution of Secondary Alcohols at Room Temperature vol.7, pp.20, 2005, https://doi.org/10.1021/ol051889x
  2. Chemoenzymatic Dynamic Kinetic Resolution of Alcohols and Amines vol.2010, pp.6, 2009, https://doi.org/10.1002/ejoc.200900935
  3. Dynamic Kinetic Resolution of Amines and Amino Acids by Enzyme-Metal Cocatalysis vol.3, pp.2, 2010, https://doi.org/10.1002/cctc.201000330
  4. Substituent Effect on Catalytic Activities of [{η5-Ar4C4COC(O)Ar}Ru(CO)2Cl] in Racemization and DKR of Secondary Alcohols vol.3, pp.2, 2010, https://doi.org/10.1002/cctc.201000304
  5. Organocatalyzed Dynamic Kinetic Resolution vol.353, pp.5, 2011, https://doi.org/10.1002/adsc.201000751
  6. Readily Available Ruthenium Complex for Efficient Dynamic Kinetic Resolution of Aromatic α-Hydroxy Ketones vol.16, pp.8, 2014, https://doi.org/10.1021/ol500764q
  7. Reverse Stereoselectivity in the Lipase-Catalyzed Hydrolysis of Diacetylated Pyrimidine Acyclonucleosides vol.8, pp.23, 2016, https://doi.org/10.1002/cctc.201600931
  8. A Cationic Ruthenium Complex for the Dynamic Kinetic Resolution of Secondary Alcohols vol.20, pp.41, 2014, https://doi.org/10.1002/chem.201404096
  9. Biocatalytic Racemization Employing TeSADH: Substrate Scope and Organic Solvent Compatibility for Dynamic Kinetic Resolution vol.10, pp.4, 2018, https://doi.org/10.1002/cctc.201701395
  10. Towards a continuous dynamic kinetic resolution of 1-phenylethylamine using a membrane assisted, two vessel process pp.33, 2007, https://doi.org/10.1039/b709035h
  11. Synthesis of Enantiopure Ruthenium Tricarbonyl Complexes of a Bicyclic Cyclopentadienone Derivative vol.2008, pp.16, 2008, https://doi.org/10.1002/ejic.200800174
  12. De-racemization of Enantiomers versus De-epimerization of Diastereomers-Classification of Dynamic Kinetic Asymmetric Transformations (DYKAT) vol.14, pp.27, 2008, https://doi.org/10.1002/chem.200701643
  13. Dynamic Kinetic Resolutions and Asymmetric Transformations by Enzyme-Metal Combo Catalysis vol.36, pp.31, 2005, https://doi.org/10.1002/chin.200531263
  14. A Dynamic Kinetic Resolution of Allyl Alcohols by the Combined Use of Lipases and [VO(OSiPh3)3] vol.118, pp.16, 2005, https://doi.org/10.1002/ange.200503765
  15. A Dynamic Kinetic Resolution of Allyl Alcohols by the Combined Use of Lipases and [VO(OSiPh3)3] vol.45, pp.16, 2005, https://doi.org/10.1002/anie.200503765
  16. Study of an Enzyme Activity in Extracts of Ginkgo biloba Leaves vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1885
  17. (S)-Selective Dynamic Kinetic Resolution of Allylic Alcohols by Enzyme-Metal Bicatalysis vol.28, pp.11, 2005, https://doi.org/10.5012/bkcs.2007.28.11.2096
  18. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds vol.63, pp.8, 2005, https://doi.org/10.1016/j.tet.2006.09.110
  19. Recent developments in dynamic kinetic resolution vol.64, pp.8, 2005, https://doi.org/10.1016/j.tet.2007.10.080
  20. Racemization catalysts for the dynamic kinetic resolution of alcohols and amines vol.252, pp.5, 2005, https://doi.org/10.1016/j.ccr.2007.09.009
  21. Dynamic Kinetic Resolution of Racemic β-Haloalcohols: Direct Access to Enantioenriched Epoxides vol.130, pp.41, 2008, https://doi.org/10.1021/ja805128x
  22. Ruthenium and enzyme-catalyzed dynamic kinetic resolution of alcohols vol.12, pp.9, 2005, https://doi.org/10.1016/j.crci.2008.09.002
  23. Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid vol.31, pp.3, 2010, https://doi.org/10.5012/bkcs.2010.31.03.650
  24. Recent developments in dynamic kinetic resolution vol.67, pp.21, 2005, https://doi.org/10.1016/j.tet.2011.04.001
  25. Enantioselective Synthesis of Alcohols and Amines by Iridium‐Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes vol.19, pp.23, 2005, https://doi.org/10.1002/chem.201202836