Browse > Article
http://dx.doi.org/10.12925/jkocs.2015.32.3.451

Electrochemical and Raman Spectroscopy Analysis for D- and L-Tryptophan-b-Cyclodextrin Inclusion Complexes  

Jeong, Yu-Ra (Department of Chemistry, Hannam University)
Lee, So-Ra (Department of Chemistry, Hannam University)
Son, Pyeong-Soo (Department of Chemistry, Hannam University)
Choi, Seong-Ho (Department of Chemistry, Hannam University)
Publication Information
Journal of the Korean Applied Science and Technology / v.32, no.3, 2015 , pp. 451-460 More about this Journal
Abstract
An enantioselective recognition of D- and L-tryptophan (Trp)-b-cyclodextrin (CD) inclusion complex was performed using electrochemical and FT-Raman spectroscopic analysis. From the electrochemical analysis, the selectivity coefficient ($K_{DL}$) of b-CD inclusion complexes was found higher than that of the D- and L-Trp in phosphate buffered saline (PBS, pH=7.0) solution. The percentage of enantioselectivity ($I_{%{ee}}$) for peak current of D-Trp-b-CD inclusion complexes was observed higher than that of L-Trp-b-CD inclusion complexes in PBS solution. From Raman spectroscopy, chemical shift difference (D, $cm^{-1}$) for the C=C stretch, ring vibration, and ring breathing of D-Try-b-CD inclusion complex were observed higher than that of L-Trp-b-CD inclusion complex. The electrochemical and Raman spectroscopic analyses were found very useful for chiral detection of racemic amino acid in the presence of b-CD.
Keywords
Electrochemical analysis; Raman spectroscopy analysis; D- and L-Tryptophan; b-Cyclodextrin inclusion complexes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Yashima and K. Maeda, Chirality-Responsive Helical Polymers, Macromolecules, 41, 3 (2008).   DOI
2 T. Q. Yan and C. Orihuela, Rapid and high throughput separation technologies-Steady state recycling and supercritical fluid chromatography for chiral resolution of pharmaceutical intermediates, J. Chromatogr. A, 1156, 220 (2007).   DOI
3 L. Zhang, M. Song, Q. Tian, and S. Min, Chiral separation of l,d-tyrosine and l,d-tryptophan by ct DNA, Sep. Purif. Technol., 55, 388 (2007).   DOI
4 Z.-X. Zheng, J.-M. Lin, and F. Qu, Chiral separation of underivatized and dansyl amino acids by ligand-exchange micellar electrokinetic capillary chromatography using a copper(II)-L-valine complex as selector, J. Chromatogr. A, 1007, 189 (2003).   DOI
5 X. Lu, Y. Chen, L. Guo, and Y. Yang, Chiral separation of underivatized amino acids by ligand-exchange capillary electrophoresis using a copper(II)-L-lysine complex as selector, J. Chromatogr. A, 945, 249 (2002).   DOI
6 Elek, D. Mangelings, T. Ivanyi, I. Lazar, and Y. V. Heyden, Enantioselective capillary electrophoretic separation of tryptophane- and tyrosine-methylesters in a dual system with a tetra-oxadiaza-crown-ether derivative and a cyclodextrin, J. J. Pharm. Biomed. Anal., 38, 601 (2005).   DOI
7 L. Qi, G. Yangd, H. Zhang, and J. Qiao, A chiral ligand exchange CE essay with zinc(II)-l-valine complex for determining enzyme kinetic constant of l-amino acid oxidase, Talanta, 81,1554 (2010).   DOI
8 L. Chi, J. Zhao, and T. D. James, Chiral mono boronic acid as fluorescent enantioselective sensor for mono ${\alpha}$-hydroxyl carboxylic acids, J. Org. Chem., 73, 4684 (2008).   DOI
9 W. Misiuk and M. Zalewska, Spectroscopic investigations on the inclusion interaction between hydroxypropyl-${\beta}$-cyclodextrin and bupropion, J. Mol. Liq., 159, 220 (2011).   DOI
10 C. Jullian, J. Morales-Montecinos, G. Zapata-Torres, B. Aguilera, J. Rodriguez, V. Aran, and C. Olea-Azar, Characterization, phase-solubility, and molecular modeling of inclusion complex of 5-nitroindazole derivative with cyclodextrins, Bioorg. Med. Chem., 16, 5078 (2008).   DOI
11 S.-H. Choi, E.-N. Ryu, J. J. Ryoo, and K.-P. Lee, FT-Raman Spectra of o-, m-, and p-Nitrophenol Included in Cyclodextrins, J. Inclusion Phenom. Macrocyclic Chem., 40, 271 (2001).   DOI
12 S.-H. Choi, S.-Y. Kim, J. J. Ryoo, and K.-P. Lee, Complexation of the Non-steroidal Anti-inflammatory Drug Loxoprofen with Modified and Unmodified ${\beta}$-Cyclodextrins, J. Inclusion Phenom. Macrocyclic Chem., 40, 139 (2001).   DOI
13 S.-H. Choi, J.-W. Seo, S.-I. Nam, M.-S. Lee, and K.-P. Lee, FT-Raman Spectra of 2-, 3-, and 4-Chlorostyrene Molecules Included in Cyclodextrins, J. Inclusion Phenom. Macrocyclic Chem., 40, 279 (2001).   DOI
14 G. qing, T. Sun, Z. Cehn, X. Yang, X. Wu, and Y. He, 'Naked-Eye' Enantioselective Chemosensors for N-Protected Amino Acid Anions Bearing Thiourea Units, Chirality, 21, 363 (2009).   DOI
15 S.-Z. Kang, H. Chen, X. Li, and J. Mu, Preparation of l-alanine ethyl ester modified multiwalled carbon nanotubes and their chiral discrimination between dand l-tryptophan, Diamond Relat. Mater., 19, 1221 (2010).   DOI
16 T. Stalina, K. Srinivasana, K. Sivakumar, and S. Radhakrishnan, Preparation and characterizations of solid/aqueous phases inclusioncomplex of 2,4-dinitroaniline with b-cyclodextrin, Carbohydr. Polym., 107, 72 (2014).   DOI
17 Chiral discrimination between d- and l-tryptophan based on the alteration of the fluorescence lifetimes by the chiral additives, Yanli Wei, Sufang Wang, Shaomin Shuang, and Chuan Dong, Talanta, 81, 1800-1805 (2010).   DOI
18 F. Liu, X. Liu, S.-C. Ng, and H. S.-O. Chan, Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan, Sens. Actuators B, 113, 234 (2006).   DOI
19 H.-S. Guoa, J.-M. Kim, S.-M. Chang, and W.-S. Kim, Chiral recognition of mandelic acid by l-phenylalanine-modified sensor using quartz crystal microbalance, Biosens. Bioelectron., 24, 2931 (2009).   DOI
20 N. Rajendiran, G. Venkatesh, and R.K. Sankaranarayanan, Encapsulation of thiazolyazoresorcinol and thiazolyazocresol dyes with a- and b-cyclodextrin cavities: Spectral and molecular modeling studies, J. Mol. Struct., 1072, 242 (2014).   DOI
21 J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev., 98, 1743 (1998).   DOI
22 A. D. Bani-Yaseen and A. Mo'ala, Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in b-cyclodextrin nano-cavity, Spectrochim. Acta, Part A, 131, 424 (2014).   DOI
23 Z. Li, S. Chen, Z. Gu, J. Chen and J. Wu, Alpha-cyclodextrin: Enzymatic production and food applications, Trends Food Sci. Technol., 35, 151 (2014).   DOI
24 G. K. Budnikov, G. A. Evtyugin, Y. G. Budnikova, and V. A. Al'fonsov, Chemically modified electrodes with amperometric response in enantioselective analysis, Journal of Analytical Chemistry, 63, 2 (2008).   DOI
25 J.-B. Raoof, R. Ojani, and H. Karimi-Maleh, Carbon Paste Electrode Incorporating 1-[4-(Ferrocenyl Ethynyl) Phenyl]-1-Ethanone for Electrocatalytic and Voltammetric Determination of Tryptophan, Electroanalysis, 20, 1259 (2008).   DOI