• Title/Summary/Keyword: emission spectra

Search Result 945, Processing Time 0.028 seconds

Investigation of the influence of substrate surface on the ZnO nanostructures growth (기판 표면의 영향에 의한 ZnO 나노 구조 성장에 관한 연구)

  • Ha, Seon-Yeo;Jung, Mi-Na;Park, Seung-Hwan;Yang, Min;Kim, Hong-Seung;Lee, Uk-Hyeon;Yao, Takafumi;Jang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1022-1025
    • /
    • 2005
  • The effect of substrate surface to the formation of ZnO nanostructures has been investigated using Si (111), $Al_2O_3$(C-plane) $Al_2O_3$(A-plane), and $Al_2O_3$(R-plane) substrates. The growth temperature was controlled from 500$^{\circ}C$ ${\sim}$ 600$^{\circ}C$, and the luminescence properties were investigated by a series of photoluminescence (PL) measurements at the elevating temperatures. ZnO nanostructures grown on Si substrate show strong UV emission intensity along with green emission positioned at 3.22 eV and 2.5 eV, respectively. However, green emission was not observed from the ZnO nanostructures grown on $Al_2O_3$ substrates. It is explained in terms of the difference of the surface energy between Si and $Al_2O_3$. Also, the origin of UV emissions has been discussed by using the temperature-dependent PL. The distinction of the PL spectra is interpreted in terms of the difference of the impurity included in the nanostructures.

  • PDF

Luminescence Properties of Europium-doped NaSr(PO3)3 Phosphor (Europium이 첨가된 NaSr(PO3)3형광체의 형광특성)

  • Yoon, Changyong;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.645-652
    • /
    • 2019
  • Phosphor with phosphorus doped with rare earth ions was investigated by searching Sr and Eu phosphors suitable for substitution of Eu ions with similar ionic radius to polyphosphate host. The $NaSr(PO_3)_3$ phosphor was synthesized by the solid state method and the $NaSr(PO_3)_3:Eu^{2+}$ phosphor was prepared by the carbon thermal reduction method. Both of the phosphors were identified by X - ray diffraction. The excitation and emission spectra of $NaSr(PO_3)_3:Eu^{3+}$ increased fluorescence intensity and intensity quenching with increasing $Eu^{3+}$ concentration. The higher the $Eu^{3+}$ concentration in the emission spectrum, the higher the local symmetry of $Eu^{3+}$ environment. The mechanism of concentration quenching, in which fluorescence decreases due to the energy transfer between $Eu^{2+}$ ions with the closest critical distance between $Eu^{2+}$ ions with increasing $Eu^{2+}$ ion concentration, was confirmed in the emission spectrum of $NaSr(PO_3)_3:Eu^{2+}$ concentration. It is possible to change the fluorescent region through the post-processing of single rare earth ion added phosphors, and it is possible to change the fluorescence by applying the energy transfer and concentration quenching mechanism according to the local symmetry of $Eu^{3+}$ will be used for high phosphor development.

Annealing Effects on Properties of ZnO Nanorods Grown by Hydrothermal Method (수열합성법으로 성장된 산화아연 나노막대의 특성 및 열처리 효과)

  • Jeon, Su-Min;Kim, Min-Su;Kim, Ghun-Sik;Cho, Min-Young;Choi, Hyun-Young;Yim, Kwang-Gug;Kim, Hyeoung-Geun;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.293-299
    • /
    • 2010
  • Vertically aligned ZnO nanorods on Si (111) substrate were prepared by hydrothermal method. The ZnO nanorods on spin-coated seed layer were synthesized at $140^{\circ}C$ for 6 hours in autoclave and were thermally annealed in argon atmosphere for 20 minutes at temperature of 300, 500, $700^{\circ}C$. The effects of the thermal annealing on the structural and optical properties of the grown on ZnO nanorods were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL). All the ZnO nanorods show a strong ZnO (002) and weak (004) diffraction peak, indicating c-axis preferred orientation. The residual stress of the ZnO nanorods is changed from compressive to tensile by increasing annealing temperature. The hexagonal shaped ZnO nanorods are observed. The PL spectra of the ZnO nanorods show a sharp near-band-edge emission (NBE) at 3.2 eV, which is generated by the free-exciton recombination and a broad deep-level emission (DLE) at about 2.12~1.96 eV, which is caused by the defects in the ZnO nanorods. The intensity of the NBE peak is decreased and the DLE peak is red-shifted due to oxygen-related defects by thermal annealing.

Properties of Photoluminescence and Growth of CdIn2Te4 Single Crystal by Bridgeman method (Bridgeman법에 의한 CdIn2Te4 단결정 성장과 광발광 특성)

  • Moon, Jong-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.273-281
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgeman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61{\times}10^{16}\;cm^{-3}$ and $242\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.4750\;eV-(7.69{\times}10^{-3}\;eV)T^2/(T+2147)$. After the as-grown $CdIn_2Te_4$ single crystal was annealed in Cd-, In-, and Te-atmospheres, the origin of point defects of $CdIn_2Te_4$ single crystal has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Te}$, $Cd_{int}$, and $V_{Cd}$, $Te_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cd-atmosphere converted $CdIn_2Te_4$ single crystal to an optical n-type. Also, we confirmed that In in $CdIn_2Te_4$ did not form the native defects because In in $CdIn_2Te_4$ single crystal existed in the form of stable bonds.

A Study on Thermally Stimulated Luminescence and Exoelectron Emission Phenomena of MgO Single Crystals (MgO 단결정의 열자극 발광 및 Exo전자 방출 현상에 관한 연구)

  • Doo, Ha-Young;Sim, Sang-Hung;Kim, Hyun-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • On the MgO single crystals doped artificially with Cr, Cu, Fe we observed thermally stimulated luminescence(TSL) glow curves and spectra, and analyzed them in the temperatures range from at liquid nitrogen temperature(77K) to about 500K after excitation with UV or X-ray irradiation. TSL glow curves obtained from these samples show five peaks at 136.5K, 223.5K, 360K, 390K, 440K, and their estimated activation energies are 0.27eV, 0.63eV, 1.08eV, 1.08eV, 1.19eV, and 1.33eV, respectively. When we measured TSL spectrum at the range of 200nm to 650nm on the MgO single crystals. we also analyzed the peak wavelength which obtained at 345nm, 375nm, and 410nm from measurement of TSL spectrum and described their luminescence mechanisms. TSL spectrum peaks emitted from MgO:Cr, MgO:Cu, and MgO:Fe appear at the wavelengths of 345nm, 360nm, and 375nm, respectively.

  • PDF

Evaluation of Transparent Amorphous $V_2O_5$ Thin Film Prepared by Thermal Evaporation (진공증착법으로 제조한 투명 비정질 $V_2O_5$박막의 특성평가)

  • Hwang, Kyu-Seog;Jeong, Seol-Hee;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2008
  • Purpose: This research is that $V_2O_5$ cathode's composition is possible in low temperature. Methods: Transparent in visible spectra range and crystallographically amorphous $V_2O_5$ thin films were prepared by simple vacuum thermal evaporation on soda-lime-silica slide glass substrate. After annealing at 100$^{\circ}C$, 150$^{\circ}C$ and 200$^{\circ}C$ for 10 minutes in air, the surface morphology and the fracture-cross section of the films were investigated by field emission - scanning electron microscope. Transmittance in visible spectra range and surface roughness of the films were analyzed by ultra violet - visible spectrophotometer and scanning probe microscope, respectively. Results: As the increase of annealing temperature from 100$^{\circ}C$ to 150$^{\circ}C$ and 200$^{\circ}C$, transmittance of the $V_2O_5$ films decreased. Optical properties will be fully discussed on the basis of the surface morphological results. Conclusions: Optical transmissivity was superior in case of 100$^{\circ}C$, and could make amorphous $V_2O_5$ thin film that surface quality of thin film did homogeneity.

  • PDF

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF

Crystallographical Characteristics of Solar Salts Produced from Jeonnam Area by X-Ray Diffraction Technique (X선 회절법에 의한 전남지역 천일염의 결정학적 특성)

  • Jeong, Byung-Jo;Kim, Yong;Kim, Chang-Dae;Hyun, Seung-Cheol;Ham, Gyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1284-1288
    • /
    • 2009
  • Identification of various inorganic compound crystals contained in solar salts, which are produced from 12 areas of Jeonnam, was firstly made by the X-ray diffraction (XRD) technique. The analysis of the XRD spectra was carried out on the basis of Joint Committee on Powder Diffraction Standards (JCPDS) data and the results of Energy Dispersive X-ray Spectrometer (EDX) measurements. In particular, the analysis of the XRD spectra supported that each solar salt contains $Na_2S$ (Shinan Jeungdo and Sinui), $KMgCl_3$ (Shinan Bigeum), $Ca(ClO_3)_2$ (Shinan Docho), $CaAl_4O_7$ (Haenam Songji), $CaSiO_3$ and $CaCl_2$ (Goheung) as inorganic compound crystals, which have not been reported for the solar salts. Also, the XRD results indicated that the solar salts maintain a cubic NaCl crystal structure without any change of lattice parameters etc. However, it was shown in the Field Emission Scanning Electron Microscope (FE-SEM) images that an external form of the solar salts has a lamination layer shape of a cubic structure, which is different from a simple cubic form for the purified salts and the reagent NaCl.

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Change of fluorescence in ambers according to artificial aging (인공열화에 따른 호박(amber)의 형광특성 변화)

  • Park, Jong-Seo;Lim, Yu-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.197-206
    • /
    • 2012
  • Ambers are composed of polymer molecules which contain aromatic moieties such as benzene, naphthalene, phenanthrene and anthracene. They emit fluorescence when irradiated with ultraviolet light, which was used for confirming an amber. The fluorescence of amber, however, tends to decrease as the surface of amber is weathered with light, heat, oxygen for a long time. In this study, the reliability of confirming amber with its fluorescence by measuring the changes of fluorescence after artificial aging. Aging factors were UV light (${\lambda}$=340 nm), oxygen with heat (100%, $90^{\circ}C$) and heat ($90^{\circ}C$) and aging time was for 5, 15, 30 and 60 days, respectively. In the excitation and emission spectra of amber, the intensity decreased and the maximal wavelength was shifted to longer wavelength with artificial aging time. Especially, there was a drastic decrease in the intensity of spectra to 1.7% of initial value after 60 days aging under oxygen with heat. Only in Colombian amber there showed an increase of fluorescence intensity for a certain aging time, which could be explained by the production of aromatic ring in the presence of light and heat. Conclusively, the fluorescence can be lessened by the natural weathering with light, heat and oxygen and it is not accurate to recognize amber just with UV irradiation method.