DOI QR코드

DOI QR Code

Properties of Photoluminescence and Growth of CdIn2Te4 Single Crystal by Bridgeman method

Bridgeman법에 의한 CdIn2Te4 단결정 성장과 광발광 특성

  • 문종대 (동신대학교 광전자공학과)
  • Published : 2003.11.30

Abstract

A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgeman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61{\times}10^{16}\;cm^{-3}$ and $242\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.4750\;eV-(7.69{\times}10^{-3}\;eV)T^2/(T+2147)$. After the as-grown $CdIn_2Te_4$ single crystal was annealed in Cd-, In-, and Te-atmospheres, the origin of point defects of $CdIn_2Te_4$ single crystal has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Te}$, $Cd_{int}$, and $V_{Cd}$, $Te_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cd-atmosphere converted $CdIn_2Te_4$ single crystal to an optical n-type. Also, we confirmed that In in $CdIn_2Te_4$ did not form the native defects because In in $CdIn_2Te_4$ single crystal existed in the form of stable bonds.

수평 전기로에서 $CdIn_2Te_4$ 다결정을 합성하여 Bridgeman 법으로 3단 수직 전기로에서 $CdIn_2Te_4$ 단결정을 성장하였다. 성장된 결정의 특성은 x선 회절과 광발광 측정으로 조사하였다. $CdIn_2Te_4$ 단결정 시료는 Laue에 배면 반사법에 의해서 (001)면으로 성장되었음을 확인하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 $8.61{\times}10^{16}/cm^3$, $242\;cm^2/V{\codt}s$였다. $CdIn_2Te_4$ 단결정의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 Varshni공식에 따라 계산한 결과 1.4750eV - $(7.69{\times}10^{-3}\;eV/K)T^2$/(T+2147 K)임을 확인하였다. 막 성장된(as-grown) $CdIn_2Te_4$ 단결정 시료를 Cd-, In-, Te 분위기에서 열처리하여 10K에서 Photoluminescence(PL) spectra를 측정하여 점 결함의 기원을 알아보았다. $CdIn_2Te_4$ 단결정내에서 내재된 결함들의 기원을 10 K에서 광발광을 측정하여 연구되었다. PL 측정으로 부터 얻어진 $V_{Te}$, $Cd_{int}$, $V_{Cd}$, 그리고 $Te_{int}$는 주개와 받개로 분류되어졌다. $CdIn_2Te_4$ 단결정 시료를 Cd 분위기에서 열처리하면 n형으로 변환됨을 악 수 있었고, In 분위기에서 열처리하면 열처리 이전의 PL spectra를 보이고 있어서 $I_2$, $I_1$ 및 S.A emission에 의한 PL peak에는 영향을 주지 않는다고 보았다.

Keywords

References

  1. S. A. Lopez-Rivera. L. Martinez, J. M. Briceno-Valero, R. Echeverria and G. Gonzalez de Armengol. Prog. Cryst. Growth Charact. 10. 297. 1985. https://doi.org/10.1016/0146-3535(84)90048-0
  2. S. S. Ou, S. A. Eshraghi, O. M. Stafsudd and A. L. Gentile. J. Appl. Phys. 57. 2. 1985 https://doi.org/10.1063/1.334814
  3. V. Riede. H. Neumann. V. Kramerand M. Kittel. Solid State Commun. 78. 211 1991 https://doi.org/10.1016/0038-1098(91)90285-4
  4. V. Riede. H. Neumann. V. Kramer. M. Kittel and H. Sobotta. Cryst. Res. Technol. 26. 639, 1991 https://doi.org/10.1002/crat.2170260517
  5. G. B. Abdullaev. V. G. Agaev, A. B. Antonov. R. Kh. Nani and E. Salaev. Sov. Phys. Semicond. 6. 1492. 1972
  6. L. I. Berger and V. D. Prochukham. 'Ternary Diamond-like Semiconductor' (Consultant Bureau. New York. 1969
  7. A. Miller, D. J. Lockwood, A. MAckinnon and D. Weaire. J. Phys. C : Solid state phys. 9, 2997. 1976 https://doi.org/10.1088/0022-3719/9/16/009
  8. P. Manca. C. Muntoni. F. Raga and A. Spiga. Phys. Status Solidi(b), 44(1), 51, 1971 https://doi.org/10.1002/pssb.2220440105
  9. K. W. Browall. J. S. Kasper and H. Wiedemeier, J. Solid State Chern. 10. 20. 1974 https://doi.org/10.1016/0022-4596(74)90004-8
  10. F. S. Sinencio, J. G. Mendozaalvarez and D. Zelaya. Thin Solid Films. 193 / 194. 382. 1990 https://doi.org/10.1016/S0040-6090(05)80048-3
  11. D. F. Edwards and D. F. O`kane. Bull. Am. Phys. Soc. 5. 78. 1960
  12. S. Kianian. S. A. Eshraghi. O. M. Stafsudd and A. L. Gentile. J. Appl. Phys. 62. 1500. 1987 https://doi.org/10.1063/1.339631
  13. B. D. Cullity. 'Elements of X-ray Diffractions' Caddson-Wesley. chap 11. 1985
  14. H. Hahn. G. Frank. W. Klinger. A. D. Storger and G. Storger. Z. Anorg. Allgem. Chem., 279. 241 (1955) H. Hahn. G. Frank. W. Klinger. A. D. Storger and G. Storger. Z. Anorg. Allgern. Chern., 279. 241. 1955 https://doi.org/10.1002/zaac.19552790502
  15. Elizabeth A. wood. Crystal Orientation manual. (Columbia university press. 1963)
  16. J. S. Blakemore. Solid state physics. 2nd ed. (Cambridge University Press, Cambridge, 1985). pp 47and 364
  17. Y. J. Shin, S. K. Kim, B. H. Park, T. S. Jeong, H. K. Shin, T.S. Kim, and P. Y. Yu. Phys. Rev. B. 44. 5522. 1991 https://doi.org/10.1103/PhysRevB.44.5522
  18. Y. P. Varshni. Physica. 34. 149. 1967 https://doi.org/10.1016/0031-8914(67)90062-6
  19. J. L. Shay and J. H. Wernick, 'Ternary Chalcopyrite Semiconductor: Growth. Electronic Properties and Applications' (chap.3. chap.4. Pergamon Press. 1975)
  20. B. Tell. J. L. Shay and H. M. Kasper. 'Luminescence and impurity states in Cdln2Te4.' Phys. Rev.. B4 2465 .1971
  21. R. E. Halsted and M. Aven. Phys. Rev. Lett.. 14. 64, 1965 https://doi.org/10.1103/PhysRevLett.14.64