Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.4.293

Annealing Effects on Properties of ZnO Nanorods Grown by Hydrothermal Method  

Jeon, Su-Min (Department of Nano Systems Engineering, Inje University)
Kim, Min-Su (Department of Nano Systems Engineering, Inje University)
Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University)
Cho, Min-Young (Department of Nano Systems Engineering, Inje University)
Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University)
Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University)
Kim, Hyeoung-Geun (Department of Nano Systems Engineering, Inje University)
Lee, Dong-Yul (Samsung LED)
Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University)
Kim, Jong-Su (Department of Physics, Yeungnam University)
Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science)
Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.4, 2010 , pp. 293-299 More about this Journal
Abstract
Vertically aligned ZnO nanorods on Si (111) substrate were prepared by hydrothermal method. The ZnO nanorods on spin-coated seed layer were synthesized at $140^{\circ}C$ for 6 hours in autoclave and were thermally annealed in argon atmosphere for 20 minutes at temperature of 300, 500, $700^{\circ}C$. The effects of the thermal annealing on the structural and optical properties of the grown on ZnO nanorods were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL). All the ZnO nanorods show a strong ZnO (002) and weak (004) diffraction peak, indicating c-axis preferred orientation. The residual stress of the ZnO nanorods is changed from compressive to tensile by increasing annealing temperature. The hexagonal shaped ZnO nanorods are observed. The PL spectra of the ZnO nanorods show a sharp near-band-edge emission (NBE) at 3.2 eV, which is generated by the free-exciton recombination and a broad deep-level emission (DLE) at about 2.12~1.96 eV, which is caused by the defects in the ZnO nanorods. The intensity of the NBE peak is decreased and the DLE peak is red-shifted due to oxygen-related defects by thermal annealing.
Keywords
ZnO; Nanorods; Annealing; X-ray diffraction; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Wang, P. Zhang, J. Yue, Y. Zhang, and L. Zheng, Physica B 403, 2235 (2008).   DOI   ScienceOn
2 W. M. Kwok, A. B. Djurisic, Y. H. Leung. D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, Appl. Phys. Lett. 89, 183112 (2006).   DOI
3 B. Ha, H. Ham, and C. J. Lee, J. Phys. Chem. Solid 69, 2453 (2008).   DOI
4 Y. Ryu, T. Lee, J. A. Lubguban, H. W. White, B. Kim, Y. Park, and C. Youn, Appl. Phys. Lett. 88, 241108 (2006).   DOI
5 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, Nathan, Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. 12, 323 (2002).   DOI
6 M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Crys. Growth 311, 3568 (2009).   DOI
7 S. W. Xue, X. T. Zu, L. X. Shao, Z. L. Yuan, W. G, Zheng, X. D. Jiang, and H. Deng, J. Alloy Compd. 458, 569 (2008).   DOI
8 B. Liu and H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003).   DOI
9 B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).   DOI
10 L. Wu, Y. Wu, X. Pan, and F. Kong, Opti. Mater. 28, 418 (2006).   DOI
11 Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).   DOI   ScienceOn
12 M. H. Choi and T. Y. Ma, J. Mater, Sci. 41, 431 (2006).   DOI
13 J. Wu and S. C. Liu, Adv. Mater. (Weinheim, Ger.) 14, 215 (2002).   DOI
14 W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002).   DOI
15 Q. X. Zhao, P. Klason, and M. Willander, Appl. Phys. A Mater. Sci. Process 88, 27 (2007).   DOI
16 H. M. Zhong, W. Lu, Y. Sun, and Z. F. Li, Chin. Phys. Lett. 24, 2678 (2007).   DOI
17 C. Bekeny, T. Voss, B. Hilker, J. Gutowsaki, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, J. Appl. Phys. 102, 044908 (2007).   DOI
18 Y. Zhang, G. Du, B. Liu, H. C. Zhu, T. Yang, W. Li, D. Liu, and S. Yang, J. Crystal Growth 262, 456 (2004).   DOI   ScienceOn
19 A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Nanotechnology 18, 095702 (2007).   DOI
20 R. Yousefi and B. Kamaluddin, Solid State Sci. 12, 252 (2010).   DOI
21 B. Ha, H. Hm, and C. J. Lee, J. Phys. Chem. Solids 69, 2453 (2008).   DOI
22 L. L. Yang, Q. X. Zhao, M. Willander, J. H. Yang, and I. Ivanov, J. Appl. Phys. 105, 053503 (2009).   DOI
23 M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin,S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. (a) 203, 2418 (2006).   DOI
24 X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).   DOI
25 S. A. Studeninkin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).   DOI
26 B. W. Park, G.-C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002).   DOI
27 J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Chom, H. S. Han, and S. Kim, J. Cryst. Growth 254, 423 (2003).   DOI
28 M. L. Cui, X. M. Wu, L. J. Zhuge, and Y. D. Meng, Vacuum 81, 899 (2007).   DOI
29 Y. F. Mei, R. K. Y. fu, G. G. Siu, P. K. Chu, Z. M. Li, C. L. Yang, W. K. Ge, Z. K. Tang, W. Y. Cheung, and S. P. Wong, Mater. Sci. Process 7, 459 (2004).   DOI
30 X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003).   DOI
31 C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue, and X. Y. Fan, Appl. Surf. Sci. 253, 4000 (2007).   DOI
32 L. Wang, Y. Pu, Y. F. Chen, C. L. Mo, W. Q. Fang, C. B. Xiong, J. N. Dai, and F. Y. Jiang, J. Cryst. Growth 284, 459 (2005).   DOI
33 Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, Appl. Surf. Sci. 241, 303 (2005).   DOI
34 류혁현, 한국진공학회지 18, 73 (2009).   과학기술학회마을
35 Y. J. Xing, Z. H. Xi, Z. Q. Xue. X. D. Zhang, J. H. Song, R. M. Wang, J. Xu. Y. Song, S. L.Zhang, and D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003).   DOI
36 Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).   DOI
37 김희수, 한국진공학회지 18, 384 (2009).   과학기술학회마을
38 M. Wang, J. Wang, W. Chen, Y. Cui, and L. Wang, Mater. Chem. Phys. 97, 219 (2006).   DOI
39 H. J. Ko, M. S. Han, Y. S. Park, Y. S. Yu, B. I. Kim, S. S. Kim, and J. H. Kim, J. Cryst. Growth 269, 493 (2004).   DOI
40 J. Koo, M. Lee, J. Kang, C. Yoon, K. Kim, Y. Jeon, and S. Kim, Semicond. Sci. Technol. 25, 045010 (2010).   DOI