DOI QR코드

DOI QR Code

Annealing Effects on Properties of ZnO Nanorods Grown by Hydrothermal Method

수열합성법으로 성장된 산화아연 나노막대의 특성 및 열처리 효과

  • Jeon, Su-Min (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Min-Su (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University) ;
  • Cho, Min-Young (Department of Nano Systems Engineering, Inje University) ;
  • Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Hyeoung-Geun (Department of Nano Systems Engineering, Inje University) ;
  • Lee, Dong-Yul (Samsung LED) ;
  • Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Su (Department of Physics, Yeungnam University) ;
  • Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
  • 전수민 (인제대학교 나노시스템공학과) ;
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 김군식 (인제대학교 나노시스템공학과) ;
  • 조민영 (인제대학교 나노시스템공학과) ;
  • 최현영 (인제대학교 나노시스템공학과) ;
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 김형근 (인제대학교 나노시스템공학과) ;
  • 이동율 (삼성 LED) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 김종수 (영남대학교 물리학과) ;
  • 이주인 (한국표준과학연구원) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.05.27
  • Accepted : 2010.07.07
  • Published : 2010.07.30

Abstract

Vertically aligned ZnO nanorods on Si (111) substrate were prepared by hydrothermal method. The ZnO nanorods on spin-coated seed layer were synthesized at $140^{\circ}C$ for 6 hours in autoclave and were thermally annealed in argon atmosphere for 20 minutes at temperature of 300, 500, $700^{\circ}C$. The effects of the thermal annealing on the structural and optical properties of the grown on ZnO nanorods were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL). All the ZnO nanorods show a strong ZnO (002) and weak (004) diffraction peak, indicating c-axis preferred orientation. The residual stress of the ZnO nanorods is changed from compressive to tensile by increasing annealing temperature. The hexagonal shaped ZnO nanorods are observed. The PL spectra of the ZnO nanorods show a sharp near-band-edge emission (NBE) at 3.2 eV, which is generated by the free-exciton recombination and a broad deep-level emission (DLE) at about 2.12~1.96 eV, which is caused by the defects in the ZnO nanorods. The intensity of the NBE peak is decreased and the DLE peak is red-shifted due to oxygen-related defects by thermal annealing.

수열합성법으로 실리콘 (111) 기판 위에 산화아연 나노막대를 성장하였다. 산화아연 나노막대를 성장하기 전, 실리콘 기판에 스핀코팅법으로 씨앗층을 성장하였다. 산화아연 나노막대는 오토클레이브(autoclave)로 $140^{\circ}C$에서 6시간 동안 성장하였고, 아르곤 분위기에서 300, 500, $700^{\circ}C$의 온도로 20분 동안 열처리하였다. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL)를 이용하여 열처리한 산화아연 나노막대의 구조적, 광학적 특성을 분석하였다. 모든 산화아연 나노막대 시료에서 c-축 배향성을 나타내는 강한 ZnO (002) 회절 피크와 약한 ZnO (004) 회절 피크가 나타났다. 열처리 온도가 증가함에 따라 산화아연 나노로드의 residual stress는 compressive에서 tensile로 변하였다. Hexagonal 형태의 산화아연 나노로드를 관찰하였다. 산화아연 나노로드의 PL 스펙트럼은 free-exciton recombination에 의해 3.2 eV에서 좁은 near-band-edge emission (NBE) 피크와 산화아연 나노막대의 결함에 의해 2.12~1.96 eV에서 넓은 deep-level emission (DLE) 피크가 나타났다. 산화아연 나노막대를 열처리함에 따라, NBE 피크의 세기는 감소하였고 DLE 피크는 열처리에 의해 발생한 산소 관련 결함에 의하여 적색편이 하였다.

Keywords

References

  1. Y. Ryu, T. Lee, J. A. Lubguban, H. W. White, B. Kim, Y. Park, and C. Youn, Appl. Phys. Lett. 88, 241108 (2006). https://doi.org/10.1063/1.2210452
  2. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998). https://doi.org/10.1063/1.121620
  3. 김희수, 한국진공학회지 18, 384 (2009).
  4. J. Koo, M. Lee, J. Kang, C. Yoon, K. Kim, Y. Jeon, and S. Kim, Semicond. Sci. Technol. 25, 045010 (2010). https://doi.org/10.1088/0268-1242/25/4/045010
  5. 류혁현, 한국진공학회지 18, 73 (2009).
  6. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). https://doi.org/10.1063/1.1587878
  7. Y. J. Xing, Z. H. Xi, Z. Q. Xue. X. D. Zhang, J. H. Song, R. M. Wang, J. Xu. Y. Song, S. L.Zhang, and D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003). https://doi.org/10.1063/1.1605808
  8. B. W. Park, G.-C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002). https://doi.org/10.1002/adma.200290015
  9. J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Chom, H. S. Han, and S. Kim, J. Cryst. Growth 254, 423 (2003). https://doi.org/10.1016/S0022-0248(03)01197-7
  10. Q. X. Zhao, P. Klason, and M. Willander, Appl. Phys. A Mater. Sci. Process 88, 27 (2007). https://doi.org/10.1007/s00339-007-3958-0
  11. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, Nathan, Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. 12, 323 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  12. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004). https://doi.org/10.1016/j.cplett.2004.07.110
  13. J. Wu and S. C. Liu, Adv. Mater. (Weinheim, Ger.) 14, 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  14. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 80, 4232 (2002). https://doi.org/10.1063/1.1482800
  15. B. Liu and H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003). https://doi.org/10.1021/ja0299452
  16. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001). https://doi.org/10.1063/1.1394173
  17. L. Wu, Y. Wu, X. Pan, and F. Kong, Opti. Mater. 28, 418 (2006). https://doi.org/10.1016/j.optmat.2005.03.007
  18. W. M. Kwok, A. B. Djurisic, Y. H. Leung. D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, Appl. Phys. Lett. 89, 183112 (2006). https://doi.org/10.1063/1.2378560
  19. B. Ha, H. Ham, and C. J. Lee, J. Phys. Chem. Solid 69, 2453 (2008). https://doi.org/10.1016/j.jpcs.2008.04.041
  20. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Crys. Growth 311, 3568 (2009). https://doi.org/10.1016/j.jcrysgro.2009.05.010
  21. S. W. Xue, X. T. Zu, L. X. Shao, Z. L. Yuan, W. G, Zheng, X. D. Jiang, and H. Deng, J. Alloy Compd. 458, 569 (2008). https://doi.org/10.1016/j.jallcom.2007.04.239
  22. H. J. Ko, M. S. Han, Y. S. Park, Y. S. Yu, B. I. Kim, S. S. Kim, and J. H. Kim, J. Cryst. Growth 269, 493 (2004). https://doi.org/10.1016/j.jcrysgro.2004.05.096
  23. C. Wang, P. Zhang, J. Yue, Y. Zhang, and L. Zheng, Physica B 403, 2235 (2008). https://doi.org/10.1016/j.physb.2007.12.002
  24. C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue, and X. Y. Fan, Appl. Surf. Sci. 253, 4000 (2007). https://doi.org/10.1016/j.apsusc.2006.08.048
  25. L. Wang, Y. Pu, Y. F. Chen, C. L. Mo, W. Q. Fang, C. B. Xiong, J. N. Dai, and F. Y. Jiang, J. Cryst. Growth 284, 459 (2005). https://doi.org/10.1016/j.jcrysgro.2005.06.058
  26. Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, Appl. Surf. Sci. 241, 303 (2005). https://doi.org/10.1016/j.apsusc.2004.07.056
  27. M. Wang, J. Wang, W. Chen, Y. Cui, and L. Wang, Mater. Chem. Phys. 97, 219 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.072
  28. M. L. Cui, X. M. Wu, L. J. Zhuge, and Y. D. Meng, Vacuum 81, 899 (2007). https://doi.org/10.1016/j.vacuum.2006.10.011
  29. Y. F. Mei, R. K. Y. fu, G. G. Siu, P. K. Chu, Z. M. Li, C. L. Yang, W. K. Ge, Z. K. Tang, W. Y. Cheung, and S. P. Wong, Mater. Sci. Process 7, 459 (2004). https://doi.org/10.1016/j.mssp.2004.09.021
  30. L. L. Yang, Q. X. Zhao, M. Willander, J. H. Yang, and I. Ivanov, J. Appl. Phys. 105, 053503 (2009). https://doi.org/10.1063/1.3073993
  31. S. A. Studeninkin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998). https://doi.org/10.1063/1.368295
  32. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin,S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. (a) 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  33. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001). https://doi.org/10.1063/1.1361288
  34. M. H. Choi and T. Y. Ma, J. Mater, Sci. 41, 431 (2006). https://doi.org/10.1007/s10853-005-2280-5
  35. B. Ha, H. Hm, and C. J. Lee, J. Phys. Chem. Solids 69, 2453 (2008). https://doi.org/10.1016/j.jpcs.2008.04.041
  36. H. M. Zhong, W. Lu, Y. Sun, and Z. F. Li, Chin. Phys. Lett. 24, 2678 (2007). https://doi.org/10.1088/0256-307X/24/9/060
  37. C. Bekeny, T. Voss, B. Hilker, J. Gutowsaki, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, J. Appl. Phys. 102, 044908 (2007). https://doi.org/10.1063/1.2773632
  38. Y. Zhang, G. Du, B. Liu, H. C. Zhu, T. Yang, W. Li, D. Liu, and S. Yang, J. Crystal Growth 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  39. A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Nanotechnology 18, 095702 (2007). https://doi.org/10.1088/0957-4484/18/9/095702
  40. R. Yousefi and B. Kamaluddin, Solid State Sci. 12, 252 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.11.002