• Title/Summary/Keyword: embryonic stem cells

Search Result 441, Processing Time 0.024 seconds

The Use of Stem Cells as Medical Therapy (줄기세포를 이용한 세포치료법)

  • Son Eun-Hwa;Pyo Suhkneung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.1-11
    • /
    • 2005
  • Recently, there has been extremely active in the research of stem cell biology. Stem cells have excellent potential for being the ultimate source of transplantable cells for many different tissues. Researchers hope to use stem cells to repair or replace diseased or damaged organs, leading to new treatments for human disorders that are currently incurable, including diabetes, spinal cord injury and brain diseases. There are primary sources of stem cells like embryonic stem cells and adult stem cells. Stem cells from embryos were known to give rise to every type of cell. However, embryonic stem cells still have a lot of disadvantages. First, transplanted cells sometimes grow into tumors. Second, the human embryonic stem cells that are available for research would be rejected by a patient's immune system. Tissue-matched transplants could be made by either creating a bank of stem cells from more human embryos, or by cloning a patient's DNA into existing stem cells to customize them. However, this is laborious and ethically contentious. These problems could be overcome by using adult stem cells, taken from a patient, that are treated to remove problems and then put back. Nevertheless, some researchers do not convince that adult stem cells could, like embryonic ones, make every tissue type. Human stem cell research holds enormous potential for contributing to our understanding of fundamental human biology. In this review, we discuss the recent progress in stem cell research and the future therapeutic applications.

In vitro culture of chicken embryonic stem cell-like cells

  • Bo Ram Lee;Hyeon Yang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • Chicken embryonic stem (ES) cells have great potential and provide a powerful tool to investigate embryonic development and to manipulate genetic modification in a genome. However, very limited studies are available on the functional characterization and robust expansion of chicken ES cells compared to other species. Here, we have developed a method to generate chicken embryonic stem cell-like cells under pluripotent culture conditions. The chicken embryonic stem cell-like cells were cultivated long-term over several passages of culture without loss of pluripotency in vitro and had the specific expression of key stem cell markers. Furthermore, they showed severe changes in morphology and a significant reduction in pluripotent genes after siRNA-mediated NANOG knockdown. Collectively, these results demonstrate the efficient generation of chicken embryonic stem cell-like cells from EGK stage X blastoderm-derived singularized cells and will facilitate their potential use for various purposes, such as biobanking genetic materials and understanding stemness in the fields of animal biotechnology.

The Kleisin Subunits of Cohesin Are Involved in the Fate Determination of Embryonic Stem Cells

  • Koh, Young Eun;Choi, Eui-Hwan;Kim, Jung-Woong;Kim, Keun Pil
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.820-832
    • /
    • 2022
  • As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.

Embryo-derived stem cells -a system is emerging

  • Binas, B.
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.72-80
    • /
    • 2009
  • In mammals, major progress has recently been made with the dissection of early embryonic cell specification, the isolation of stem cells from early embryos, and the production of embryonic-like stem cells from adult cells. These studies have overcome long-standing species barriers for stem cell isolation, have revealed a deeper than expected similarity of embryo cell types across species, and have led to a better understanding of the lineage identities of embryo-derived stem cells, most notably of mouse and human embryonic stem (ES) cells. Thus, it has now become possible to propose a species-overarching classification of embryo stem cells, which are defined here as pre- to early post-implantation conceptus-derived stem cell types that maintain embryonic lineage identities in vitro. The present article gives an overview of these cells and discusses their relationships with each other and the conceptus. Consequently, it is debated whether further embryo stem cell types await isolation, and the study of the earliest extraembryonically committed stem cells is identified as a promising new research field.

Porcine OCT4 reporter system as a tool for monitoring pluripotency states

  • Kim, Seung-Hun;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.

Stem cell maintenance by manipulating signaling pathways: past, current and future

  • Chen, Xi;Ye, Shoudong;Ying, Qi-Long
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.668-676
    • /
    • 2015
  • Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.

Pig Pluripotent Stem Cells as a Candidate for Biomedical Application

  • Choi, Kwang-Hwan;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.139-147
    • /
    • 2019
  • Stem cells are progenitor cells that are capable of self-renewal and differentiation into various cells. Especially, pluripotent stem cells (PSCs) have in vivo and in vitro differentiation capacity into three germ layers and can proliferate infinitely. The differentiation ability of PSCs can be applied for regenerative medicine and tissue engineering. In domestic animals, their PSCs have a potential for preclinical therapy as well as the production of transgenic animals and agricultural usage such as cultured meat. Among several domestic animals, a pig is considered as an ideal model for biomedical and agricultural purposes mentioned above. In this reason, studies for pig PSCs including embryonic stem cells (ESCs), embryonic germ cells (EGCs) and induced pluripotent stem cells (iPSCs) have been conducted for decades. Therefore, this review will discuss the history of PSCs derived from various origins and recent progress in pig PSC research field.

Assessment of Developmental Toxicants using Human Embryonic Stem Cells

  • Hong, Eui-Ju;Jeung, Eui-Bae
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.

Simplified Slow Freezing Program Established for Effective Banking of Embryonic Stem Cells

  • Kim, Gil Ah;Lee, Seung Tae;Lee, Eun Ju;Choi, Jung Kyu;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.343-349
    • /
    • 2009
  • This study was designed to simplify a cryopreservation program for embryonic stem cells (ESCs) by selection of cooling method and cryoprotectant. Commercially available mouse E14 embryonic stem cells (ESCs) were cryopreserved with various protocols, and morphology and viability of the frozen-thawed ESCs and their reactive oxygen species (ROS) production were subsequently monitored. Post-thaw colony-formation of ESCs was detected only after a slow freezing using dimethyl sulfoxide (DMSO) by stepwise placement of a freezing container into a $-80^{\circ}C$ deep freezer and subsequently into -$196^{\circ}C$ liquid nitrogen, while no proliferation was detected after vitrification. When the simplified protocol was employed, the replacement of DMSO with a mixture of DMSO and ethylene glycol (EG) further improved the post-thaw survival. ROS generation in ESCs frozen-thawed with the optimized protocol was not increased compared with non-frozen ESCs. The use of fresh mouse embryonic fibroblasts as feeder cells for post-thaw subculture did not further increase post-thaw cell viability. In conclusion, a simplified slow-freezing program without employing programmable freezer but using DMSO and EG was developed which maintains cell viability and colony-forming activity of ESCs during post-thaw subculture.

Cancer stem cell surface markers on normal stem cells

  • Kim, Won-Tae;Ryu, Chun Jeih
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.285-298
    • /
    • 2017
  • The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.