Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.6.039

Cancer stem cell surface markers on normal stem cells  

Kim, Won-Tae (Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University)
Ryu, Chun Jeih (Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University)
Publication Information
BMB Reports / v.50, no.6, 2017 , pp. 285-298 More about this Journal
Abstract
The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.
Keywords
Adult stem cells; Cancer stem cells; Human embryonic stem cells; Normal tissue cells; Surface marker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nodomi S, Umeda K, Saida S et al (2016) CD146 is a novel marker for highly tumorigenic cells and a potential therapeutic target in malignant rhabdoid tumor. Oncogene 35, 5317-5327   DOI
2 Wei Q, Tang YJ, Voisin V et al (2015) Identification of CD146 as a marker enriched for tumor-propagating capacity reveals targetable pathways in primary human sarcoma. Oncotarget 6, 40283-40294
3 Galy A, Travis M, Cen D and Chen B (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459-473   DOI
4 Mariotti E, Mirabelli P, Abate G et al (2008) Comparative characteristics of mesenchymal stem cells from human bone marrow and placenta: CD10, CD49d, and CD56 make a difference. Stem Cells Dev 17, 1039-1041   DOI
5 Fukusumi T, Ishii H, Konno M et al (2014) CD10 as a novel marker of therapeutic resistance and cancer stem cells in head and neck squamous cell carcinoma. Br J Cancer 111, 506-514   DOI
6 Maguer-Satta V, Chapellier M, Delay E and Bachelard-Cascales E (2011) CD10: a tool to crack the role of stem cells in breast cancer. Proc Natl Acad Sci U S A 108, E1264; author reply E1265   DOI
7 Carpenter MK, Rosler ES, Fisk GJ et al (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn 229, 243-258   DOI
8 Miettinen M and Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13, 205-220   DOI
9 O'Keefe TL, Williams GT, Davies SL and Neuberger MS (1998) Mice carrying a CD20 gene disruption. Immunogenetics 48, 125-132   DOI
10 Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22, 7359-7368   DOI
11 Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65, 9328-9337   DOI
12 Wang PL, O'Farrell S, Clayberger C and Krensky AM (1992) Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 148, 2600-2608
13 Martinet L and Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15, 243-254   DOI
14 Garg S, Madkaikar M and Ghosh K (2013) Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions. Int J Stem Cells 6, 129-133   DOI
15 Hosen N, Park CY, Tatsumi N et al (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104, 11008-11013   DOI
16 Goodfellow PJ, Nevanlinna HA, Gorman P, Sheer D, Lam G and Goodfellow PN (1989) Assignment of the gene encoding the beta-subunit of the human fibronectin receptor (beta-FNR) to chromosome 10p11.2. Ann Hum Genet 53, 15-22   DOI
17 Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147   DOI
18 Jaggupilli A and Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012, 708036
19 Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-4295   DOI
20 Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11, 254-267   DOI
21 Nagano O, Okazaki S and Saya H (2013) Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 32, 5191-5198   DOI
22 Hirata K, Suzuki H, Imaeda H et al (2013) CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br J Cancer 109, 379-386   DOI
23 Yoshikawa M, Tsuchihashi K, Ishimoto T et al (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73, 1855-1866   DOI
24 Ishimoto T, Nagano O, Yae T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19, 387-400   DOI
25 Lau WM, Teng E, Chong HS et al (2014) CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 74, 2630-2641   DOI
26 Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451, 345-349   DOI
27 Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40, 499-507   DOI
28 Narva E, Autio R, Rahkonen N et al (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28, 371-377   DOI
29 Chen J, Wang J, Chen D et al (2013) Evaluation of characteristics of CD44+CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol 14, 7   DOI
30 Ksander BR, Kolovou PE, Wilson BJ et al (2014) ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511, 353-357   DOI
31 Miyauchi J, Kelleher CA, Yang YC et al (1987) The effects of three recombinant growth factors, IL-3, GM-CSF, and G-CSF, on the blast cells of acute myeloblastic leukemia maintained in short-term suspension culture. Blood 70, 657-663
32 Choi HS, Kim H, Won A et al (2008) Development of a decoy immunization strategy to identify cell-surface molecules expressed on undifferentiated human embryonic stem cells. Cell Tissue Res 333, 197-206   DOI
33 Lee AS, Tang C, Rao MS, Weissman IL and Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19, 998-1004   DOI
34 Dvorak P, Dvorakova D and Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580, 2869-2874   DOI
35 Clarke MF and Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124, 1111-1115   DOI
36 Choi HS, Kim WT, Kim H et al (2011) Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells. Stem Cells Dev 20, 609-620   DOI
37 Kim WT, Seo Choi H, Min Lee H, Jang YJ and Ryu CJ (2014) B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule. Stem Cells 32, 2626-2641   DOI
38 Medof ME, Lublin DM, Holers VM et al (1987) Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A 84, 2007-2011   DOI
39 Stashenko P, Nadler LM, Hardy R and Schlossman SF (1980) Characterization of a human B lymphocyte-specific antigen. J Immunol 125, 1678-1685
40 Vassilopoulos A, Chisholm C, Lahusen T, Zheng H and Deng CX (2014) A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene 33, 5477-5482   DOI
41 Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9, 40-55   DOI
42 Kim YJ, Yu JM, Joo HJ et al (2007) Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells. Pflugers Arch 455, 283-296   DOI
43 Yamazaki H, Xu CW, Naito M et al (2011) Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia. Biochem Biophys Res Commun 409, 14-21   DOI
44 Zannettino AC, Paton S, Arthur A et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214, 413-421   DOI
45 Wang F, Scoville D, He XC et al (2013) Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology 145, 383-395 e381-321   DOI
46 Levin TG, Powell AE, Davies PS et al (2010) Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 139, 2072-2082 e2075   DOI
47 Tachezy M, Zander H, Wolters-Eisfeld G et al (2014) Activated leukocyte cell adhesion molecule (CD166): an "inert" cancer stem cell marker for non-small cell lung cancer? Stem Cells 32, 1429-1436   DOI
48 Thapa R and Wilson GD (2016) The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int 2016, 2087204
49 Lapidot T, Dar A and Kollet O (2005) How do stem cells find their way home? Blood 106, 1901-1910   DOI
50 Visvader JE and Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8, 755-768   DOI
51 Zhang L, Hua Q, Tang K, Shi C, Xie X and Zhang R (2016) CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience 337, 88-97   DOI
52 Ou X, O'Leary HA and Broxmeyer HE (2013) Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 122, 161-169   DOI
53 Herrmann H, Sadovnik I, Cerny-Reiterer S et al (2014) Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 123, 3951-3962   DOI
54 Pang R, Law WL, Chu AC et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6, 603-615   DOI
55 Li M, Chang CJ, Lathia JD et al (2011) Chemokine receptor CXCR4 signaling modulates the growth factor-induced cell cycle of self-renewing and multipotent neural progenitor cells. Glia 59, 108-118   DOI
56 Mukherjee D and Zhao J (2013) The Role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 3, 46-57
57 Dubrovska A, Hartung A, Bouchez LC et al (2012) CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 107, 43-52   DOI
58 Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176, 2584-2494   DOI
59 Sadras T, Perugini M, Kok CH et al (2014) Interleukin-3-mediated regulation of beta-catenin in myeloid transformation and acute myeloid leukemia. J Leukoc Biol 96, 83-91   DOI
60 Brewer BG, Mitchell RA, Harandi A and Eaton JW (2009) Embryonic vaccines against cancer: an early history. Exp Mol Pathol 86, 192-197   DOI
61 Stonehill EH and Bendich A (1970) Retrogenetic expression: the reappearance of embryonal antigens in cancer cells. Nature 228, 370-372   DOI
62 Klavins JV, Mesa-Tejada R and Weiss M (1971) Human carcinoma antigens cross reacting with anti-embryonic antibodies. Nat New Biol 234, 153-154
63 Bendich A, Borenfreund E and Stonehill EH (1973) Protection of adult mice against tumor challenge by immunization with irradiated adult skin or embryo cells. J Immunol 111, 284-285
64 Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432, 396-401   DOI
65 Tirino V, Desiderio V, Paino F et al (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27, 13-24   DOI
66 Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730-737   DOI
67 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988   DOI
68 Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946-10951   DOI
69 Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67, 1030-1037   DOI
70 O'Brien CA, Pollett A, Gallinger S and Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110   DOI
71 Zhang WC, Shyh-Chang N, Yang H et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259-272   DOI
72 Takaishi S, Okumura T, Tu S et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27, 1006-1020   DOI
73 Curley MD, Therrien VA, Cummings CL et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27, 2875-2883
74 Schopperle WM and DeWolf WC (2007) The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 25, 723-730
75 Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW and Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743-1751   DOI
76 Sandstedt J, Jonsson M, Vukusic K et al (2014) SSEA-4+ CD34- cells in the adult human heart show the molecular characteristics of a novel cardiomyocyte progenitor population. Cells Tissues Organs 199, 103-116   DOI
77 Chang WW, Lee CH, Lee P et al (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 105, 11667-11672   DOI
78 Corominas-Faja B, Cufi S, Oliveras-Ferraros C et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12, 3109-3124   DOI
79 Rajasekhar VK, Studer L, Gerald W, Socci ND and Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2, 162   DOI
80 Mao XG, Zhang X, Xue XY et al (2009) Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15. Transl Oncol 2, 247-257   DOI
81 Liebert M, Jaffe R, Taylor RJ, Ballou BT, Solter D and Hakala TR (1987) Detection of SSEA-1 on human renal tumors. Cancer 59, 1404-1408   DOI
82 Miyake M, Zenita K, Tanaka O, Okada Y and Kannagi R (1988) Stage-specific expression of SSEA-1-related antigens in the developing lung of human embryos and its relation to the distribution of these antigens in lung cancers. Cancer Res 48, 7150-7158
83 Yaddanapudi K, Mitchell RA, Putty K et al (2012) Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible? PLoS One 7, e42289   DOI
84 Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF and Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133, 157-165
85 Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC and Eaves CJ (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A 87, 3584-3588   DOI
86 Adinolfi M and Lessof MH (1985) Cancer, oncogenes and oncofetal antigens. Q J Med 54, 193-204
87 Li Y, Zeng H, Xu RH, Liu B and Li Z (2009) Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells 27, 3103-3111
88 Dong W, Du J, Shen H et al (2010) Administration of embryonic stem cells generates effective antitumor immunity in mice with minor and heavy tumor load. Cancer Immunol Immunother 59, 1697-1705   DOI
89 Kim J, Woo AJ, Chu J et al (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313-324   DOI
90 Reff ME, Carner K, Chambers KS et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435-445
91 Gramatzki M, Ludwig WD, Burger R et al (1998) Antibodies TC-12 ("unique") and TH-111 (CD96) characterize T-cell acute lymphoblastic leukemia and a subgroup of acute myeloid leukemia. Exp Hematol 26, 1209-1214
92 Kaiser J (2015) The cancer stem cell gamble. Science 347, 226-229   DOI
93 Terris B, Cavard C and Perret C (2010) EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol 52, 280-281   DOI
94 Boiko AD, Razorenova OV, van de Rijn M et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133-137   DOI
95 Bach P, Abel T, Hoffmann C et al (2013) Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res 73, 865-874   DOI
96 Waldron NN, Barsky SH, Dougherty PR and Vallera DA (2014) A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 9, 239-249   DOI
97 Schmohl JU and Vallera DA (2016) CD133, Selectively Targeting the Root of Cancer. Toxins (Basel) 8, 165   DOI
98 Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC and Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8, 806-823   DOI
99 Xia P (2014) Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 9, 102-111   DOI
100 Grosse-Gehling P, Fargeas CA, Dittfeld C et al (2013) CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 229, 355-378   DOI
101 Irollo E and Pirozzi G (2013) CD133: to be or not to be, is this the real question? Am J Transl Res 5, 563-581
102 Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002-5012
103 Sundberg M, Jansson L, Ketolainen J et al (2009) CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res 2, 113-124   DOI
104 Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97, 14720-14725   DOI
105 Kemper K, Sprick MR, de Bree M et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70, 719-729   DOI
106 Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM and Goltry KL (2007) Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Stem Cells 25, 2575-2582   DOI
107 International Stem Cell I, Adewumi O, Aflatoonian B et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25, 803-816   DOI
108 Quintana E, Shackleton M, Foster HR et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510-523   DOI
109 Schober M and Fuchs E (2011) Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A 108, 10544-10549   DOI
110 Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L and Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106, 262-271   DOI
111 Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R and Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97, 652-659   DOI
112 Rahman MM, Subramani J, Ghosh M et al (2014) CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle. Front Physiol 4, 402
113 Haraguchi N, Ishii H, Mimori K et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120, 3326-3339   DOI
114 Kuroda Y, Kitada M, Wakao S et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 107, 8639-8643   DOI
115 Islam F, Gopalan V, Smith RA and Lam AK (2015) Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res 335, 135-147   DOI
116 Zhao W, Ji X, Zhang F, Li L and Ma L (2012) Embryonic stem cell markers. Molecules 17, 6196-6236   DOI
117 Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147   DOI
118 Salcido CD, Larochelle A, Taylor BJ, Dunbar CE and Varticovski L (2010) Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 102, 1636-1644   DOI
119 Buishand FO, Arkesteijn GJ, Feenstra LR et al (2016) Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas. Stem Cells Dev 25, 826-835   DOI
120 He J, Liu Y, Zhu T et al (2012) CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics 11, M111 010744
121 Shimojima M, Nishimura Y, Miyazawa T, Kato K, Tohya Y and Akashi H (2003) CD56 expression in feline lymphoid cells. J Vet Med Sci 65, 769-773   DOI
122 Altomonte M, Montagner R, Fonsatti E et al (1996) Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma. Br J Cancer 74, 1586-1591   DOI
123 Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M and Ghadirkhomi E (2014) Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 7, 118-126   DOI
124 Bianco C and Salomon DS (2010) Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin Ther Pat 20, 1739-1749   DOI
125 Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153-166   DOI
126 Ng VY, Ang SN, Chan JX and Choo AB (2010) Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 28, 29-35   DOI
127 Patriarca C, Macchi RM, Marschner AK and Mellstedt H (2012) Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 38, 68-75   DOI
128 Yamashita T, Ji J, Budhu A et al (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012-1024   DOI
129 Bianco C, Rangel MC, Castro NP et al (2010) Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol 177, 532-540   DOI
130 Choo AB, Tan HL, Ang SN et al (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26, 1454-1463   DOI
131 Kelley TW, Huntsman D, McNagny KM, Roskelley CD and Hsi ED (2005) Podocalyxin: a marker of blasts in acute leukemia. Am J Clin Pathol 124, 134-142   DOI
132 Koch LK, Zhou H, Ellinger J et al (2008) Stem cell marker expression in small cell lung carcinoma and developing lung tissue. Hum Pathol 39, 1597-1605   DOI
133 Padmanabhan R, Chen KG and Gottesman MM (2014) Lost in Translation: Regulation of ABCG2 Expression in Human Embryonic Stem Cells. J Stem Cell Res Ther 4, 24230
134 Apati A, Orban TI, Varga N et al (2008) High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells. Biochim Biophys Acta 1778, 2700-2709   DOI
135 Barker N, Tan S and Clevers H (2013) Lgr proteins in epithelial stem cell biology. Development 140, 2484-2494   DOI
136 Saroufim A, Messai Y, Hasmim M et al (2014) Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma. Br J Cancer 110, 1778-1784   DOI
137 Forster R, Chiba K, Schaeffer L et al (2014) Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Rep 2, 838-852   DOI
138 Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007   DOI
139 Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H and Medema JP (2012) Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30, 2378-2386   DOI
140 Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608-611   DOI
141 Hirsch D, Barker N, McNeil N et al (2014) LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35, 849-858   DOI
142 Ward AC (2007) The role of the granulocyte colony-stimulating factor receptor (G-CSF-R) in disease. Front Biosci 12, 608-618   DOI
143 Zage PE, Whittle SB and Shohet JM (2017) CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 118, 221-231   DOI
144 Hsu DM, Agarwal S, Benham A et al (2013) G-CSF receptor positive neuroblastoma subpopulations are enriched in chemotherapy-resistant or relapsed tumors and are highly tumorigenic. Cancer Res 73, 4134-4146   DOI
145 Tohma S, Ramberg JE and Lipsky PE (1992) Expression and distribution of CD11a/CD18 and CD54 during human T cell-B cell interactions. J Leukoc Biol 52, 97-103   DOI
146 Yu KR, Yang SR, Jung JW et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30, 876-887   DOI
147 Ho MM, Ng AV, Lam S and Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67, 4827-4833   DOI
148 Kristiansen G, Sammar M and Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35, 255-262
149 Zhang C, Li C, He F, Cai Y and Yang H (2011) Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol 137, 1679-1686   DOI
150 Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I and Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218-221   DOI
151 Lathia JD, Gallagher J, Heddleston JM et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6, 421-432   DOI
152 Yen WC, Fischer MM, Axelrod F et al (2015) Targeting notch signaling with a notch2/notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res 21, 2084-2095   DOI
153 Fox V, Gokhale PJ, Walsh JR, Matin M, Jones M and Andrews PW (2008) Cell-cell signaling through NOTCH regulates human embryonic stem cell proliferation. Stem Cells 26, 715-723   DOI
154 Imayoshi I, Sakamoto M, Yamaguchi M, Mori K and Kageyama R (2010) Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. J Neurosci 30, 3489-3498   DOI
155 Sarkadi B, Orban TI, Szakacs G et al (2010) Evaluation of ABCG2 expression in human embryonic stem cells: crossing the same river twice? Stem Cells 28, 174-176   DOI
156 Singh JK, Farnie G, Bundred NJ et al (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res 19, 643-656   DOI
157 Amaral AT, Manara MC, Berghuis D et al (2014) Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications. PLoS One 9, e85814   DOI
158 Chen T, Yang K, Yu J et al (2012) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22, 248-258   DOI
159 Wilson S, Wilkinson G and Milligan G (2005) The CXCR1 and CXCR2 receptors form constitutive homoand heterodimers selectively and with equal apparent affinities. J Biol Chem 280, 28663-28674   DOI
160 Ringe J, Strassburg S, Neumann K et al (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 101, 135-146   DOI
161 Chen L, Fan J, Chen H et al (2014) The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 4, 5911
162 Kikushige Y, Shima T, Takayanagi S et al (2010) TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7, 708-717   DOI
163 Ikeda J, Morii E, Liu Y et al (2008) Prognostic significance of CD55 expression in breast cancer. Clin Cancer Res 14, 4780-4786   DOI
164 Pellegrinet L, Rodilla V, Liu Z et al (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140, 1230-1240 e1231-1237   DOI
165 Hoey T, Yen WC, Axelrod F et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168-177   DOI
166 Fischer M, Yen WC, Kapoun AM et al (2011) Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res 71, 1520-1525   DOI