Browse > Article
http://dx.doi.org/10.12750/JARB.34.3.139

Pig Pluripotent Stem Cells as a Candidate for Biomedical Application  

Choi, Kwang-Hwan (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University)
Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.34, no.3, 2019 , pp. 139-147 More about this Journal
Abstract
Stem cells are progenitor cells that are capable of self-renewal and differentiation into various cells. Especially, pluripotent stem cells (PSCs) have in vivo and in vitro differentiation capacity into three germ layers and can proliferate infinitely. The differentiation ability of PSCs can be applied for regenerative medicine and tissue engineering. In domestic animals, their PSCs have a potential for preclinical therapy as well as the production of transgenic animals and agricultural usage such as cultured meat. Among several domestic animals, a pig is considered as an ideal model for biomedical and agricultural purposes mentioned above. In this reason, studies for pig PSCs including embryonic stem cells (ESCs), embryonic germ cells (EGCs) and induced pluripotent stem cells (iPSCs) have been conducted for decades. Therefore, this review will discuss the history of PSCs derived from various origins and recent progress in pig PSC research field.
Keywords
embryonic germ cells; embryonic stem cells; induced pluripotent stem cells; pig; pluripotent stem cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ogorevc J, Orehek S, Dovc P. 2016. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. J Anim Sci Biotechnol. 7:10.   DOI
2 Park JK, Kim HS, Uh KJ, Choi KH, Kim HM, Lee T, Yang BC, Kim HJ, Ka HH, Kim H, et al. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One. 8:e52481.   DOI
3 Pera MF, Tam PP. 2010. Extrinsic regulation of pluripotent stem cells. Nature. 465:713-720.   DOI
4 Petkov SG, Marks H, Klein T, Garcia RS, Gao Y, Stunnenberg H, Hyttel P. 2011. In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at Days 20-24 of gestation. Stem Cell Res. 6:226-237.   DOI
5 Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, et al. 2010. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 28:848-855.   DOI
6 Resnick JL, Bixler LS, Cheng L, Donovan PJ. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature. 359:550-551.   DOI
7 Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences of the United States of America. 95: 13726-13731.   DOI
8 Stevens LC. 1970. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Developmental Biology. 21:364-382.   DOI
9 Stevens LC. 1981. Genetic influences on teratocarcinogenesis and parthenogenesis. Progress in Clinical and Biological Research. 45:93-104.
10 Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, Shiina T, Ogasawara K, Hirami Y, Kurimoto Y, Takahashi M. 2016. Successful Transplantation of Retinal Pigment Epithelial Cells from MHC Homozygote iPSCs in MHC-Matched Models. Stem Cell Reports. 7:635-648.   DOI
11 Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, et al. 2013. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 153:1228-1238.   DOI
12 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131: 861-872.   DOI
13 Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663-676.   DOI
14 Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science. 282:1145-1147.   DOI
15 Anderson GB, Choi SJ, Bondurant RH. 1994. Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology. 42:204-212.   DOI
16 Blelloch RH, Hochedlinger K, Yamada Y, Brennan C, Kim M, Mintz B, Chin L, Jaenisch R. 2004. Nuclear cloning of embryonal carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America. 101:13985-13990.   DOI
17 Bradley A, Evans M, Kaufman MH, Robertson E. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 309:255-256.   DOI
18 Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 448:196-199.   DOI
19 Thomas KR, Capecchi MR. 1986. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature. 324:34-38.   DOI
20 Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, et al. 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol. 1:46-54.   DOI
21 Ying QL, Nichols J, Chambers I, Smith A. 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 115:281-292.   DOI
22 Choi KH, Park JK, Son D, Hwang JY, Lee DK, Ka H, Park J, Lee CK. 2016. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig. PLoS One. 11:e0158046.   DOI
23 Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 448:191-195.   DOI
24 Chin MH, Pellegrini M, Plath K, Lowry WE. 2010. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell. 7:263-269.   DOI
25 Choi J, Clement K, Huebner AJ, Webster J, Rose CM, Brumbaugh J, Walsh RM, Lee S, Savol A, Etchegaray JP, et al. 2017. DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell. 20:706-719.   DOI
26 Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917-1920.   DOI
27 Choi J, Lee S, Mallard W, Clement K, Tagliazucchi GM, Lim H, Choi IY, Ferrari F, Tsankov AM, Pop R, et al. 2015. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 33:1173-1181.   DOI
28 Choi KH, Lee DK, Kim SW, Woo SH, Kim DY, Lee CK. 2019. Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro. Stem Cell Reports. 13:221-234.   DOI
29 Choi KH, Lee DK, Oh JN, Son HY, Lee CK. 2018. FGF2 Signaling Plays an Important Role in Maintaining Pluripotent State of Pig Embryonic Germ Cells. Cell Reprogram. 20:301-311.   DOI
30 Durcova-Hills G, Tang F, Doody G, Tooze R, Surani MA. 2008. Reprogramming primordial germ cells into pluripotent stem cells. PloS one. 3:e3531.   DOI
31 Eiselleova L, Peterkova I, Neradil J, Slaninova I, Hampl A, Dvorak P. 2008. Comparative study of mouse and human feeder cells for human embryonic stem cells. The International Journal of Developmental Biology. 52:353-363.   DOI
32 Hochedlinger K, Jaenisch R. 2002. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature. 415:1035-1038.   DOI
33 Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, et al. 2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. The Journal of Biological Chemistry. 284:17634-17640.   DOI
34 Evans MJ, Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature. 292:154-156.   DOI
35 Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM. 2009. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America. 106:10993-10998.   DOI
36 Fujishiro SH, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, Ishino R, Nishimura T, Watanabe M, Abe T, et al. 2013. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 22:473-482.   DOI
37 Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. 2009. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 5:17-26.   DOI
38 Hogan B, Fellous M, Avner P, Jacob F. 1977. Isolation of a human teratoma cell line which expresses F9 antigen. Nature. 270:515-518.   DOI
39 Hyldig SM, Croxall N, Contreras DA, Thomsen PD, Alberio R. 2011. Epigenetic reprogramming in the porcine germ line. BMC Dev Biol. 11:11.   DOI
40 Kim SH, Choi KH, Lee DK, Lee M, Hwang JY, Lee CK. 2019. Identification and Characterization of the OCT4 Upstream Regulatory Region in Sus scrofa. Stem Cells Int. 2019:2130973.   DOI
41 Kleinsmith LJ, Pierce GB Jr. 1964. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Research. 24:1544-1551.
42 Martin GR, Evans MJ. 1974. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell 2:163-172.   DOI
43 Kojima Y, Kaufman-Francis K, Studdert JB, Steiner KA, Power MD, Loebel DA, Jones V, Hor A, de Alencastro G, Logan GJ, et al. 2014. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell. 14:107-120.   DOI
44 Lee CK, Piedrahita JA. 2000. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning. 2: 197-205.   DOI
45 Martin GR. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America. 78:7634-7638.   DOI
46 Martin GR, Evans MJ. 1975. Multiple differentiation of clonal teratocarcinoma stem cells following embryoid body formation in vitro. Cell. 6:467-474.   DOI
47 Matsui Y, Toksoz D, Nishikawa S, Nishikawa S, Williams D, Zsebo K, Hogan BL. 1991. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature. 353:750-752.   DOI
48 Matsui Y, Zsebo K, Hogan BL. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 70:841-847.   DOI
49 Nichols J, Smith A. 2009. Naive and primed pluripotent states. Cell Stem Cell. 4:487-492.   DOI
50 Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S. 2010. Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America. 107:14152-14157.   DOI