Browse > Article
http://dx.doi.org/10.12750/JARB.36.4.175

Porcine OCT4 reporter system as a tool for monitoring pluripotency states  

Kim, Seung-Hun (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University)
Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.36, no.4, 2021 , pp. 175-182 More about this Journal
Abstract
Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.
Keywords
naive; oct4; pig; primed; reporter; stem cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huang L, Fan N, Cai J, Yang D, Zhao B, Ouyang Z, Gu W, Lai L. 2011. Establishment of a porcine Oct-4 promoter-driven EGFP reporter system for monitoring pluripotency of porcine stem cells. Cell. Reprogram. 13:93-98.   DOI
2 Kim SH, Choi KH, Jeong J, Lee M, Lee DK, Oh JN, Choe GC, Go DM, Kim DY, Lee CK. 2021a. Pig embryonic stem cell line with porcine-specific OCT4 upstream region based dual reporter system. Stem Cell Res. 57:102609.   DOI
3 Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299-1310.   DOI
4 Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H. 2011. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21:196-204.   DOI
5 Matsui Y, Zsebo K, Hogan BL. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841-847.   DOI
6 Bamps S and Hope IA. 2008. Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. Brief. Funct. Genomic. Proteomic. 7:175-183.   DOI
7 Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191-195.   DOI
8 Buecker C and Geijsen N. 2010. Different flavors of pluripotency, molecular mechanisms, and practical implications. Cell Stem Cell 7:559-564.   DOI
9 Heard E. 2004. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16:247-255.   DOI
10 Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat TS, Okwieka P, Porter A, Gribnau J, Hochedlinger K, Geijsen N. 2010. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6:535-546.   DOI
11 Nowak-Imialek M, Kues WA, Petersen B, Lucas-Hahn A, Herrmann D, Haridoss S, Oropeza M, Lemme E, Scholer HR, Carnwath JW, Niemann H. 2011. Oct4-enhanced green fluorescent protein transgenic pigs: a new large animal model for reprogramming studies. Stem Cells Dev. 20:1563-1575.   DOI
12 Sun WS, Chun JL, Do JT, Kim DH, Ahn JS, Kim MK, Hwang IS, Kwon DJ, Hwang SS, Lee JW. 2016. Construction of a dualfluorescence reporter system to monitor the dynamic progression of pluripotent cell differentiation. Stem Cells Int. 2016:1390284.   DOI
13 Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH. 2013. Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282-286.   DOI
14 Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, Lungjangwa T, Imsoonthornruksa S, Stelzer Y, Rangarajan S, D'Alessio A, Zhang J, Gao Q, Dawlaty MM, Young RA, Gray NS, Jaenisch R. 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:524-526.   DOI
15 Medvedev SP, Shevchenko AI, Elisaphenko EA, Nesterova TB, Brockdorff N, Zakian SM. 2008. Structure and expression pattern of Oct4 gene are conserved in vole Microtus rossiae-meridionalis. BMC Genomics 9:162.   DOI
16 Resnick JL, Bixler LS, Cheng L, Donovan PJ. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550-551.   DOI
17 Choi KH, Lee DK, Kim SW, Woo SH, Kim DY, Lee CK. 2019. Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports 13:221-234.   DOI
18 Minucci S, Botquin V, Yeom YI, Dey A, Sylvester I, Zand DJ, Ohbo K, Ozato K, Scholer HR. 1996. Retinoic acid-mediated down-regulation of Oct3/4 coincides with the loss of promoter occupancy in vivo. EMBO J. 15:888-899.   DOI
19 Nichols J and Smith A. 2009. Naive and primed pluripotent states. Cell Stem Cell 4:487-492.   DOI
20 Nordhoff V, Hubner K, Bauer A, Orlova I, Malapetsa A, Scholer HR. 2001. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm. Genome 12:309-317.   DOI
21 Park JK, Kim HS, Uh KJ, Choi KH, Kim HM, Lee T, Yang BC, Kim HJ, Ka HH, Kim H, Lee CK. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One 8:e52481.   DOI
22 Tanaka TS. 2009. Transcriptional heterogeneity in mouse embryonic stem cells. Reprod. Fertil. Dev. 21:67-75.   DOI
23 Rossant J. 2008. Stem cells and early lineage development. Cell 132:527-531.   DOI
24 Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB. 2014. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55:319-331.   DOI
25 Takahashi K and Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.   DOI
26 Kim SH, Choi KH, Lee DK, Lee M, Hwang JY, Lee CK. 2019. Identification and characterization of the OCT4 upstream regulatory region in Sus scrofa. Stem Cells Int. 2019:2130973.   DOI
27 Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147.   DOI
28 Yang HM, Do HJ, Oh JH, Kim JH, Choi SY, Cha KY, Chung HM, Kim JH. 2005. Characterization of putative cis-regulatory elements that control the transcriptional activity of the human Oct4 promoter. J. Cell. Biochem. 96:821-830.   DOI
29 Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A. 2008. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287-1298.   DOI
30 Martin GR. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78:7634-7638.   DOI
31 Liu S, Bou G, Sun R, Guo S, Xue B, Wei R, Cooney AJ, Liu Z. 2015. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev. Dyn. 244:619-627.   DOI
32 Hanna JH, Saha K, Jaenisch R. 2010b. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508-525.   DOI
33 Jerabek S, Merino F, Scholer HR, Cojocaru V. 2014. OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochim. Biophys. Acta 1839:138-154.   DOI
34 Kim SH, Choi KH, Lee M, Lee DK, Lee CK. 2021b. Porcine OCT4 reporter system can monitor species-specific pluripotency during somatic cell reprogramming. Cell. Reprogram. 23:168-179.   DOI
35 Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391.   DOI
36 Choi KH, Lee DK, Oh JN, Kim SH, Lee M, Jeong J, Choe GC, Lee CK. 2020. Generation of neural progenitor cells from pig embryonic germ cells. J. Anim. Reprod. Biotechnol. 35:42-49.   DOI
37 Cheng X, Meng S, Deng J, Lai W, Wang H. 2011. Identification and characterization of the Oct4 extended transcriptional regulatory region in Guanzhong dairy goat. Genome 54:812-818.   DOI
38 Choi HW, Joo JY, Hong YJ, Kim JS, Song H, Lee JW, Wu G, Scholer HR, Do JT. 2016. Distinct enhancer activity of Oct4 in naive and primed mouse pluripotency. Stem Cell Reports 7:911-926.   DOI
39 Choi KH and Lee CK. 2019. Pig pluripotent stem cells as a candidate for biomedical application. J. Anim. Reprod. Biotechnol. 34:139-147.   DOI
40 Gardner RL and Cockroft DL. 1998. Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125:2397-2402.   DOI
41 Gerrard L, Zhao D, Clark AJ, Cui W. 2005. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23:124-133.   DOI
42 Guedes AMV, Henrique D, Abranches E. 2016. Dissecting transcriptional heterogeneity in pluripotency: single cell analysis of mouse embryonic stem cells. Methods Mol. Biol. 1516:101-119.   DOI
43 Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J. 2016. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437-446.   DOI
44 Wu G and Scholer HR. 2014. Role of Oct4 in the early embryo development. Cell Regen. 3:7.
45 Palmieri SL, Peter W, Hess H, Scholer HR. 1994. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166:259-267.   DOI
46 Rizzino A and Wuebben EL. 2016. Sox2/Oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta 1859:780-791.   DOI
47 Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196-199.   DOI
48 Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A. 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063-1069.   DOI
49 Evans MJ and Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156.   DOI
50 Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, Hubner K, Scholer HR. 1996. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122:881-894.   DOI
51 Hall V. 2008. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Rev. 4:275-282.   DOI
52 Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R. 2010a. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. U. S. A. 107:9222-9227.   DOI
53 Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R. 2009. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513-524.   DOI