Browse > Article
http://dx.doi.org/10.5487/TR.2013.29.4.221

Assessment of Developmental Toxicants using Human Embryonic Stem Cells  

Hong, Eui-Ju (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University)
Jeung, Eui-Bae (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University)
Publication Information
Toxicological Research / v.29, no.4, 2013 , pp. 221-227 More about this Journal
Abstract
Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.
Keywords
Embryonic stem cells; Embryoid body; Developmental toxicity; Differentiation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Spielmann, H., Genschow, E., Scholz, G., Brown, N.A., Piersma, A.H., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S. and Becker, K. (2001) Preliminary results of the ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim., 29, 301-303.
2 Chen, R., Chen, J., Cheng, S., Qin, J., Li, W., Zhang, L., Jiao, H., Yu, X., Zhang, X., Lahn, B.T. and Xiang, A.P. (2010) Assessment of embryotoxicity of compounds in cosmetics by the embryonic stem cell test. Toxicol. Mech. Methods, 20, 112-118.   DOI   ScienceOn
3 de Jong, E., Louisse, J., Verwei, M., Blaauboer, B.J., van de Sandt, J.J., Woutersen, R.A., Rietjens, I.M. and Piersma, A.H. (2009) Relative developmental toxicity of glycol ether alkoxy acid metabolites in the embryonic stem cell test as compared with the in vivo potency of their parent compounds. Toxicol. Sci., 110, 117-124.   DOI   ScienceOn
4 Hofer, T.I., Gerner, I., Gundert-Remy, U., Liebsch, M., Schulte, A., Spielmann, H., Vogel, R. and Wettig, K. (2004) Animal testing and alternative approaches for the human health risk assessment under the proposed new European chemicals regulation. Arch. Toxicol., 78, 549-564.   DOI
5 Eckardt, K. and Stahlmann, R. (2010) Use of two validated in vitro tests to assess the embryotoxic potential of mycophenolic acid. Arch. Toxicol., 84, 37-43.   DOI
6 Paquette, J.A., Kumpf, S.W., Streck, R.D., Thomson, J.J., Chapin, R.E. and Stedman, D.B. (2008) Assessment of the Embryonic Stem Cell Test and application and use in the pharmaceutical industry. Birth Defects Res. Part B, 83, 104-111.   DOI   ScienceOn
7 Spielmann, H., Balls, M., Dupuis, J., Pape, W.J., Pechovitch, G., de Silva, O., Holzhutter, H.G., Clothier, R., Desolle, P., Gerberick, F., Liebsch, M., Lovell, W.W., Maurer, T., Pfannenbecker, U., Potthast, J.M., Csato, M., Sladowski, D., Steiling, W. and Brantom, P. (1998) The International EU/COLIPA In Vitro Phototoxicity Validation Study: Results of Phase II (Blind Trial). Part 1: The 3T3 NRU Phototoxicity Test. Toxicol. In Vitro, 12, 305-327.   DOI   ScienceOn
8 Genschow, E., Scholz, G., Brown, N., Piersma, A., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S., Becker, K. and Spielmann, H. (2000) Development of prediction models for three in vitro embryotoxicity tests in an ECVAM validation study. In Vitro Mol. Toxicol., 13, 51-66.
9 Genschow, E., Spielmann, H., Scholz, G., Pohl, I., Seiler, A., Clemann, N., Bremer, S. and Becker, K. (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim., 32, 209-244.
10 Suzuki, N., Ando, S., Sumida, K., Horie, N. and Saito, K. (2011) Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. J. Toxicol. Sci., 36, 569-585.   DOI   ScienceOn
11 Suzuki, N., Ando, S., Yamashita, N., Horie, N. and Saito, K. (2011) Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicol. Sci., 124, 460-471.   DOI   ScienceOn
12 Flora, S.J. and Mehta, A. (2009) Monoisoamyl dimercapto-succinic acid abrogates arsenic-induced developmental toxicity in human embryonic stem cell-derived embryoid bodies: comparison with in vivo studies. Biochem. Pharmacol., 78, 1340-1349.   DOI   ScienceOn
13 Marx-Stoelting, P., Adriaens, E., Ahr, H.J., Bremer, S., Garthoff, B., Gelbke, H.P., Piersma, A., Pellizzer, C., Reuter, U., Rogiers, V., Schenk, B., Schwengberg, S., Seiler, A., Spielmann, H., Steemans, M., Stedman, D.B., Vanparys, P., Vericat, J.A., Verwei, M., van der Water, F., Weimer, M. and Schwarz, M. (2009) A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop. Altern. Lab. Anim., 37, 313-328.
14 Mehta, A., Konala, V.B., Khanna, A. and Majumdar, A.S. (2008) Assessment of drug induced developmental toxicity using human embryonic stem cells. Cell Biol. Int., 32, 1412-1424.   DOI   ScienceOn
15 Taha, M.F., Valojerdi, M.R., Hatami, L. and Javeri, A. (2012) Electron microscopic study of mouse embryonic stem cell-derived cardiomyocytes. Cytotechnology, 64, 197-202.   DOI
16 Genschow, E., Spielmann, H., Scholz, G., Seiler, A., Brown, N., Piersma, A., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S. and Becker, K. (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern. Lab. Anim., 30, 151-176.
17 Buesen, R., Genschow, E., Slawik, B., Visan, A., Spielmann, H., Luch, A. and Seiler, A. (2009) Embryonic stem cell test remastered: comparison between the validated EST and the new molecular FACS-EST for assessing developmental toxicity in vitro. Toxicol. Sci., 108, 389-400.   DOI   ScienceOn
18 Seiler, A., Visan, A., Buesen, R., Genschow, E. and Spielmann, H. (2004) Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod. Toxicol., 18, 231-240.   DOI   ScienceOn
19 Gepstein, L. (2002) Derivation and potential applications of human embryonic stem cells. Circ. Res., 91, 866-876.   DOI   ScienceOn
20 Pedersen, A., Skjong, C. and Shawlot, W. (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol., 288, 571-581.   DOI   ScienceOn
21 zur Nieden, N.I., Kempka, G. and Ahr, H.J. (2004) Molecular multiple endpoint embryonic stem cell test--a possible approach to test for the teratogenic potential of compounds. Toxicol. Appl. Pharmacol., 194, 257-269.   DOI   ScienceOn
22 Hansen, D.K., Grafton, T.F., Cross, D.R. and James, S.J. (1995) Partial attenuation of hydroxyurea-induced embryotoxicity by deoxyribonucleotides in mouse and rat embryos treated in vitro. Toxicol. In Vitro, 9, 11-19.   DOI   ScienceOn
23 Lau, C., Mole, M.L., Copeland, M.F., Rogers, J.M., Kavlock, R.J., Shuey, D.L., Cameron, A.M., Ellis, D.H., Logsdon, T.R., Merriman, J. and Setzer, R.W. (2001) Toward a biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: acquisition of experimental data. Toxicol. Sci., 59, 37-48.   DOI   ScienceOn
24 Ninomiya, H., Kishida, K., Ohno, Y., Tsurumi, K. and Eto, K. (1994) Effects of cytosine arabinoside on rat and rabbit embryos cultured in vitro. Toxicol. In Vitro, 8, 109-116.   DOI   ScienceOn
25 Norton, M.E. (1997) Teratogen update: fetal effects of indomethacin administration during pregnancy. Teratology, 56, 282-292.   DOI
26 Adlard, B.P., Dobbing, J. and Sands, J. (1975) A comparison of the effects of cytosine arabinoside and adenine arabinoside on some aspects of brain growth and development in the rat. Br. J. Pharmacol., 54, 33-39.   DOI
27 Spencer, F., Chi, L. and Zhu, M.X. (2000) Hydroxyurea inhibition of cellular and developmental activities in the decidualized and pregnant uteri of rats. J. Appl. Toxicol., 20, 407-412.   DOI
28 Ortega, A., Puig, M. and Domingo, J.L. (1991) Maternal and developmental toxicity of low doses of cytosine arabinoside in mice. Teratology, 44, 379-384.   DOI   ScienceOn
29 Shuey, D.L., Lau, C., Logsdon, T.R., Zucker, R.M., Elstein, K.H., Narotsky, M.G., Setzer, R.W., Kavlock, R.J. and Rogers, J.M. (1994) Biologically based dose-response modeling in developmental toxicology: biochemical and cellular sequelae of 5-fluorouracil exposure in the developing rat. Toxicol. Appl. Pharmacol., 126, 129-144.   DOI   ScienceOn
30 Woo, G.H., Bak, E.J., Nakayama, H. and Doi, K. (2006) Molecular mechanisms of hydroxyurea(HU)-induced apoptosis in the mouse fetal brain. Neurotoxicol. Teratol., 28, 125-134.   DOI   ScienceOn
31 Hrushesky, W.J., Vyzula, R. and Wood, P.A. (1999) Fertility maintenance and 5-fluorouracil timing within the mammalian fertility cycle. Reprod. Toxicol., 13, 413-420.   DOI   ScienceOn
32 Marcickiewicz, J., Chazan, B., Niemiec, T., Sokolska, G., Troszynski, M., Luczak, M. and Szmigielski, S. (1986) Microwave radiation enhances teratogenic effect of cytosine arabinoside in mice. Biol. Neonate, 50, 75-82.   DOI
33 Gleason, C.A. (1987) Prostaglandins and the developing kidney. Semin. Perinatol., 11, 12-21.
34 Meyers, R.L., Alpan, G., Lin, E. and Clyman, R.I. (1991) Patent ductus arteriosus, indomethacin, and intestinal distension: effects on intestinal blood flow and oxygen consumption. Pediatr. Res., 29, 569-574.
35 Dessi, F., Pollard, H., Moreau, J., Ben-Ari, Y. and Charriaut-Marlangue, C. (1995) Cytosine arabinoside induces apoptosis in cerebellar neurons in culture. J. Neurochem., 64, 1980-1987.
36 Johnson, D.C. and Dey, S.K. (1980) Role of histamine in implantation: dexamethasone inhibits estradiol-induced implantation in the rat. Biol. Reprod., 22, 1136-1141.   DOI
37 Snabes, M.C. and Harper, M.J. (1984) Site of action of indomethacin on implantation in the rabbit. J. Reprod. Fertil., 71, 559-565.   DOI   ScienceOn
38 Boeuf, H., Hauss, C., Graeve, F.D., Baran, N. and Kedinger, C. (1997) Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J. Cell Biol., 138, 1207-1217.   DOI   ScienceOn
39 Shuey, D.L., Setzer, R.W., Lau, C., Zucker, R.M., Elstein, K.H., Narotsky, M.G., Kavlock, R.J. and Rogers, J.M. (1995) Biological modeling of 5-fluorouracil developmental toxicity. Toxicology, 102, 207-213.   DOI   ScienceOn
40 Yarbro, J.W., Kennedy, B.J. and Barnum, C.P. (1965) Hydroxyurea inhibition of DNA synthesis in ascites tumor. Proc. Natl. Acad. Sci. U. S. A., 53, 1033-1035.   DOI   ScienceOn
41 Jagtap, S., Meganathan, K., Gaspar, J., Wagh, V., Winkler, J., Hescheler, J. and Sachinidis, A. (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br. J. Pharmacol., 162, 1743-1756.   DOI   ScienceOn
42 Jensen, J., Hyllner, J. and Bjorquist, P. (2009) Human embryonic stem cell technologies and drug discovery. J. Cell. Physiol., 219, 513-519.   DOI   ScienceOn
43 Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J. and Rao, M.S. (2004) Differences between human and mouse embryonic stem cells. Dev. Biol., 269, 360-380.   DOI   ScienceOn
44 Krtolica, A. and Giritharan, G. (2010) Use of human embryonic stem cell-based models for male reproductive toxicity screening. Syst. Biol. Reprod. Med., 56, 213-221.   DOI   ScienceOn
45 Krug, A.K., Kolde, R., Gaspar, J.A., Rempel, E., Balmer, N.V., Meganathan, K., Vojnits, K., Baquie, M., Waldmann, T., Ensenat-Waser, R., Jagtap, S., Evans, R.M., Julien, S., Peterson, H., Zagoura, D., Kadereit, S., Gerhard, D., Sotiriadou, I., Heke, M., Natarajan, K., Henry, M., Winkler, J., Marchan, R., Stoppini, L., Bosgra, S., Westerhout, J., Verwei, M., Vilo, J., Kortenkamp, A., Hescheler, J., Hothorn, L., Bremer, S., van Thriel, C., Krause, K.H., Hengstler, J.G., Rahnenfuhrer, J., Leist, M. and Sachinidis, A. (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch. Toxicol., 87, 123-143.   DOI   ScienceOn
46 Krtolica, A., Ilic, D., Genbacev, O. and Miller, R.K. (2009) Human embryonic stem cells as a model for embryotoxicity screening. Regener. Med., 4, 449-459.   DOI   ScienceOn
47 Suzuki, N., Yamashita, N., Koseki, N., Yamada, T., Kimura, Y., Aiba, S., Toyoizumi, T., Watanabe, M., Ohta, R., Tanaka, N. and Saito, K. (2012) Assessment of technical protocols for novel embryonic stem cell tests with molecular markers (Hand1- and Cmya1-ESTs): a preliminary cross-laboratory performance analysis. J. Toxicol. Sci., 37, 845-851.   DOI   ScienceOn
48 Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H. and Smith, A. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379-391.   DOI   ScienceOn
49 Schulpen, S.H., Robinson, J.F., Pennings, J.L., van Dartel, D.A. and Piersma, A.H. (2013) Dose response analysis of monophthalates in the murine embryonic stem cell test assessed by cardiomyocyte differentiation and gene expression. Reprod. Toxicol., 35, 81-88.   DOI   ScienceOn
50 van Dartel, D.A., Pennings, J.L., de la Fonteyne, L.J., van Herwijnen, M.H., van Delft, J.H., van Schooten, F.J. and Piersma, A.H. (2010) Monitoring developmental toxicity in the embryonic stem cell test using differential gene expression of differentiation-related genes. Toxicol. Sci., 116, 130-139.   DOI   ScienceOn
51 Sacchetti, P., Carpentier, R., Segard, P., Olive-Cren, C. and Lefebvre, P. (2006) Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res., 34, 5515-5527.   DOI   ScienceOn
52 Pines, G., Danbolt, N.C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E. and Kanner, B.I. (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature, 360, 464-467.   DOI   ScienceOn
53 Kasama-Yoshida, H., Tohyama, Y., Kurihara, T., Sakuma, M., Kojima, H. and Tamai, Y. (1997) A comparative study of 2',3'-cyclic-nucleotide 3'-phosphodiesterase in vertebrates: cDNA cloning and amino acid sequences for chicken and bullfrog enzymes. J. Neurochem., 69, 1335-1342.
54 Cohen-Haguenauer, O., Barton, P.J., Van Cong, N., Cohen, A., Masset, M., Buckingham, M., and Frezal, J. (1989) Chromosomal assignment of two myosin alkali light-chain genes encoding the ventricular/slow skeletal muscle isoform and the atrial/fetal muscle isoform (MYL3, MYL4). Hum. Genet., 81, 278-282.   DOI
55 Dirkx, R. Jr., Thomas, A., Li, L., Lernmark, A., Sherwin, R.S., De Camilli, P. and Solimena, M. (1995) Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J. Biol. Chem., 270, 2241-2246.   DOI   ScienceOn
56 Sarko, J. and Pollack, C.V. Jr. (2002) Cardiac troponins. J. Emerg. Med., 23, 57-65.   DOI   ScienceOn
57 Bround, M.J., Wambolt, R., Luciani, D.S., Kulpa, J.E., Rodrigues, B., Brownsey, R.W., Allard, M.F. and Johnson, J.D. (2013) Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J. Biol. Chem., 288, 18975-18986.   DOI   ScienceOn
58 Scholz, G., Pohl, I., Genschow, E., Klemm, M. and Spielmann, H. (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs, 165, 203-211.   DOI   ScienceOn
59 Yamanaka, S., Li, J., Kania, G., Elliott, S., Wersto, R.P., Van Eyk, J., Wobus, A.M. and Boheler, J.R. (2008) Pluripotency of embryonic stem cells. Cell Tissue Res., 331, 5-22.   DOI   ScienceOn
60 Heuer, J., Bremer, S., Pohl, I. and Spielmann, H. (1993) Development of an in vitro embryotoxicity test using murine embryonic stem cell cultures. Toxicol. In Vitro, 7, 551-556.   DOI   ScienceOn
61 Genschow, E., Scholz, G., Brown, N.A., Piersma, A.H., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S. and Spielmann, H. (1999) [Development of prediction models for three in vitro embryotoxicity tests which are evaluated in an ECVAM validation study]. ALTEX, 16, 73-83.
62 Seiler, A.E. and Spielmann, H. (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat. Protoc., 6, 961-978.   DOI   ScienceOn
63 Smith, A.G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol., 17, 435-462.   DOI   ScienceOn
64 Chavez, S.L., Meneses, J.J., Nguyen, H.N., Kim, S.K. and Pera, R.A. (2008) Characterization of six new human embryonic stem cell lines (HSF7, -8, -9, -10, -12, and -13) derived under minimal-animal component conditions. Stem Cells Dev., 17, 535-546.   DOI   ScienceOn
65 Grafton, T.F., Bazare, J.J. Jr., Hansen, D.K. and Sheehan, D.M. (1987) The in vitro embryotoxicity of 5-fluorouracil in rat embryos. Teratology, 36, 371-377.   DOI   ScienceOn