• Title/Summary/Keyword: electronic packaging

Search Result 579, Processing Time 0.02 seconds

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.

Thermomechanical Analysis of Functionally Gradient $Al-SiC_p$ Composite for Electronic Packaging (전자패키지용 경사조성 $Al-SiC_p$복합재료의 열.기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.23-29
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with sharp interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed for the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the $Al-SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Fabrication and Optimization of Mesoporous Platinum Electrodes for CMOS Integrated Enzymeless Glucose Sensor Applications (CMOS 집적회로 기반의 무효소 혈당센서 적용을 위한 메조포러스 백금 전극 제작 및 최적화)

  • Seo, Hye-K.;Park, Dae-J.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1627-1628
    • /
    • 2006
  • In this paper, mesoporous only platinum electrode and micro pore platinum electrode with mesoporous Pt are fabricated and characterized on a silicon substrate to check their usability as enzymeless sensing electrodes for developing non-disposable glucose sensors integrated with silicon CMOS read out circuitry. Since most of electrochemical glucose sensors are disposable due to the use of the enzymes that are living creatures, these are limited to use in the in-vivo and continuous monitoring system applications. The proposed mesoporous Pt electrode with approximately 2.5nm in pore diameter and 150nm in height was fabricated by using a nonionic surfactant $C_{16}EO_8$ and an electroplating technique. The micro pore Pt electrode with mesoporous Pt means the mesoporous Pt electrode fabricated on top of micro pore arrayed Pt electrode with approximately $10{\mu}m$ in pore diameter and $80{\mu}m$ in height. The measured current responses at 10mM glucose solution of plane Pt, micro pore Pt, micro pore with mesoporus Pt, and mesoporous Pt electrodes are approximately $9.9nA/mm^2$, $92.4nA/mm^2$, $3320nA/mm^2$ and $44620nA/mm^2$, respectively. These data indicate that the mesoporous Pt electrode is much more sensitive than the other Pt electrodes. Thus, it is promising for non-disposable glucose sensor and electrochemical sensor applications.

  • PDF

A Study of Warpage Analysis According to Influence Factors in FOWLP Structure (FOWLP 구조의 영향 인자에 따른 휨 현상 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.42-45
    • /
    • 2018
  • As The semiconductor decrease from 10 nanometer to 7 nanometer, It is suggested that "More than Moore" is needed to follow Moore's Law, which has been a guide for the semiconductor industry. Fan-Out Wafer Level Package(FOWLP) is considered as the key to "More than Moore" to lead the next generation in semiconductors, and the reasons are as follows. the fan-out WLP does not require a substrate, unlike conventional wire bonding and flip-chip bonding packages. As a result, the thickness of the package reduces, and the interconnection becomes shorter. It is easy to increase the number of I / Os and apply it to the multi-layered 3D package. However, FOWLP has many issues that need to be resolved in order for mass production to become feasible. One of the most critical problem is the warpage problem in a process. Due to the nature of the FOWLP structure, the RDL is wired to multiple layers. The warpage problem arises when a new RDL layer is created. It occurs because the solder ball reflow process is exposed to high temperatures for long periods of time, which may cause cracks inside the package. For this reason, we have studied warpage in the FOWLP structure using commercial simulation software through the implementation of the reflow process. Simulation was performed to reproduce the experiment of products of molding compound company. Young's modulus and poisson's ratio were found to be influenced by the order of influence of the factors affecting the distortion. We confirmed that the lower young's modulus and poisson's ratio, the lower warpage.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

The Oxidation Study of Pure Tin via Electrochemical Reduction Analysis (전기화학적 환원 분석을 통한 Sn의 산화에 대한 연구)

  • Cho Sungil;Yu Jin;Kang Sung K.;Shih Da-Yuan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.55-62
    • /
    • 2004
  • The oxidation of pure Sn and high Pb-Sn alloys was investigated under different oxidizing conditions of temperature and humidity. Both the chemical nature and the amount of oxides were characterized using electrochemical reduction analysis by measuring the electrolytic reduction potential and total transferred electrical charges. For pure tin, SnO grew faster under humid condition than in dry air at $85^{\circ}C$. A very thin (<10 ${\AA}$) layer of SnO, was formed on the top surface under humid condition. The mixture of SnO and $SnO_2$ was found for oxidation at $150^{\circ}C$. XPS and AES were performed to support the result of oxide reduction.

  • PDF

A Study of Kirkendall Void Formation and Impact Reliability at the Electroplated Cu/Sn-3.5Ag Solder Joint (전해도금 Cu와 Sn-3.5Ag 솔더 접합부의 Kirkendall void 형성과 충격 신뢰성에 관한 연구)

  • Kim, Jong-Yeon;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • A noticeable amount of Kirkendall voids formed at the Sn-3.5Ag solder joint with electroplated Cu, and that became even more significant when an additive was added to Cu electroplating bath. With SPS, a large amount of voids formed at the $Cu/Cu_3Sn$ interface of the solder joint during thermal aging at $150^{\circ}C$. The in-situ AES analysis of fractured joints revealed S segregation on the void surface. Only Cu, Sn, and S peaks were detected at the fractured $Cu/Cu_3Sn$ interfaces, and the S peak decreased rapidly with AES depth profiling. The segregation of S at the $Cu/Cu_3Sn$ interface lowered interface energy and thereby reduced the free energy barrier for the Kirkendall void nucleation. The drop impact test revealed that the electrodeposited Cu film with SPS degraded drastically with aging time. Fracture occurred at the $Cu/Cu_3Sn$ interface where a lot of voids existed. Therefore, voids occupied at the $Cu/Cu_3Sn$ interface are shown to seriously degrade drop reliability of solder joints.

  • PDF

Creep Properties of Sn-3.5Ag-xBi Solders (Sn-3.5Ag-Bi 솔더의 크리프 특성)

  • Shin, S. W.;Yu, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.25-33
    • /
    • 2001
  • Sn-3.5Ag-xBi alloys with five different levels of Bi (0, 2.5, 4.8, 7.5, 10 wt%) were prepared for evaluating creep properties. Cast alloys were roiled and heat treated to provide stable microstructures during the subsequent creep tests, which were conducted under constant load using dog-bone specimens. For the Bi containing alloys, creep strength showed the maximum around 2.5 wt%Bi and tended to decrease with increasing Bi content. The stress exponent of the alloy was around 4, suggesting typical dislocation creep, but the exponent was 2 for the 10 wt%Bi alloy, suggesting creep assisted by grain boundary Sliding. For the Bi containing alloys, the brittle fracture mode appeared showing small amount of reduction of area, while the ductile fracture mode was true for the Bi free alloy. Microstructural examination of ruptured specimens showed cavitations on grain boundaries normal to the load axis, and a significant of grain boundary sliding for the Bi containing alloys.

  • PDF

Characterization of Optical Design for Optical MEMS (Optical MEMS 응용을 위한 광학 설계)

  • Eom, Yong-Sung;Park, Heung-Woo;Park, Jun-Hee;Choi, Byung-Seok;Lee, Jong-Hyun;Yun, Ho-Kyung;Choi, Kwang-Seung;Moon, Jong-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.193-197
    • /
    • 2003
  • As one of the core technologies in the field of the optical communication with WDM, the optical cross connector with movements of micro mirrors is getting important day by day. The packaging structure of 2-dimensional NxN MOEMS switch should be determined by the harmonization of the following items such as the geometrical compatability between optical and structural components, the characteristics of optical input and output parts with device, and the electrical performance for the operation of micro mirrors. Therefore, the packaging process could be defined as the integrated technology completed by the optical and electrical science and the material science for the understanding of its thermo-mechanical properties with packaging materials. In the present study, the harmonization between the optical and structural components as well as the optical characteristics of lens system used will be investigated.

  • PDF

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives (나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물)

  • Seo, Seong Min;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.