DOI QR코드

DOI QR Code

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives

나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물

  • Seo, Seong Min (Department of Materials Science and Engineering, University of Seoul) ;
  • Sri Harini, Rajendran (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2022.03.11
  • Accepted : 2022.03.25
  • Published : 2022.03.30

Abstract

In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.

5G 시대를 맞아, 인공지능, 클라우드 컴퓨팅, 자율주행 차량, 스마트 제조 등의 기술 소요가 증가하고 있다. 전자기기의 고효율을 위해 고집적회로 및 패키징 연구는 중요하다. 전해도금된 솔더는 범프 조성의 균일성에 한계가 있다. 작은 크기의 솔더 파우더로 구성된 솔더 페이스트는 고집적 패키징에 일반적으로 사용되는 솔더 중 하나이다. 솔더 페이스트에 나노 입자를 첨가하거나 기판 표면 마감 처리를 하여 젖음성을 향상시키고, 금속 패드 계면에서 금속간화합물의 성장을 억제하는 연구가 진행중이다. 본 논문은 나노 입자 첨가를 통한 솔더 페이스트의 젖음성 향상과 계면 금속간화합물의 성장을 억제하는 원리에 대하여 설명한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 산업기술평가관리원(KEIT)의 소재부품기술개발사업 연구비 지원에 의한 연구 결과입니다(과제번호 및 과제명; '20010580', 미니-LED 미세전극 접합을 위한 도전성 나노소재 기술 개발).

References

  1. J. H. Lau, "Recent advances and trends in advanced packaging", IEEE Trans. Compon. Packag. Manuf. Technol., 12(2), 228-252 (2022) https://doi.org/10.1109/TCPMT.2022.3144461
  2. T. Lentz and F. C. T. Assembly, "Size matters: the effects of solder powder size on solder paste performance", SMT007 Mag, 32-55 (2019).
  3. M. S. Kim, W. S. Hong and M. Kim, "Flip Chip-Chip Scale Package Bonding Technology with Type 7 Solder Paste Printing", JWJ, 39(4), 359-367 (2021).
  4. V. B. Sharma, S. Tewari, S. Biswas, B. Lohani, U. D. Dwivedi, D. Dwivedi, A. Sharma and J. P. Jung, "Recent Advancements in AI-Enabled Smart Electronics Packaging for Structural Health Monitoring", Metals, 11(10), 1537 (2021). https://doi.org/10.3390/met11101537
  5. X. Gu, H. Bai, D. Chen, L. Zhao, J. Yi, X. Liu and J. Yan, "The influences of reactive nanoparticles alloying on grain boundary and melting properties about Sn3. 0Ag0. 5Cu solder". Intermetallics, 138, 107346 (2021). https://doi.org/10.1016/j.intermet.2021.107346
  6. M. Schmid, A. Zippelius, A. Hanss, S. Bockhorst and G. Elger, "Investigations on High-Power LEDs and Solder Interconnects in Automotive Application: Part I-Initial Characterization", IEEE Trans. Device Mater. Reliab., (2022).
  7. Y. Shi, Y. Wang, D. Mei, B. Feng and Z. Chen, "Design and fabrication of wearable thermoelectric generator device for heat harvesting", IEEE Robot. Autom. Lett., 3(1), 373-378 (2017). https://doi.org/10.1109/LRA.2017.2734241
  8. S. Kumar, S. Mallik, N. Ekere and J. P. Jung, "Stencil printing behavior of lead-free Sn-3Ag-0.5 Cu solder paste for wafer level bumping for sub-100 ㎛ size solder bumps", Met. Mater. Int., 19(5), 1083-1090 (2013). https://doi.org/10.1007/s12540-013-5025-z
  9. S. Zhang, X. Xu, T. Lin and P. He, "Recent advances in nanomaterials for packaging of electronic devices", J. Mater. Sci. Mater. Electron., 30(15), 13855-13868 (2019). https://doi.org/10.1007/s10854-019-01790-3
  10. S. Rung and R. Hellmann, "Laser-Induced Period Surface Structures to Improve Solderability of Electrical Solder Pads", Appl. Sci., 12(1), 80 (2022).
  11. J. Wu, S. Xue, J. Wang, M. Wu and J. Wang, "Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder", J Mater Sci: Mater Electron 29, 7372-7387 (2018). https://doi.org/10.1007/s10854-018-8727-7
  12. E. E. M. Noor, N. F. M. Nasir and S. R. A. Idris, "A review: lead free solder and its wettability properties", Solder. Surf. Mt. Technol, 28, 125-132 (2016). https://doi.org/10.1108/SSMT-08-2015-0022
  13. S. J. Zhong, L. Zhang, M. L. Li, W. M. Long and F. J. Wang, "Development of lead-free interconnection materials in electronic industry during the past decades: structure and properties", Mater. Des., 110439 (2022).
  14. K. Sukpimai, W. Suwannakrue and K. Kanlayasiri, "Wettability and printability of SAC305-xTiO2 Pb-free solder paste on Cu substrate", 10th International Conference on Mechatronics and Manufacturing(ICMM), Bangkok, 635(1), 2019 IOP Conf. Ser.: Mater. Sci. Eng.(2019)
  15. S. Tikale and K. N. Prabhu, "Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy", J. Mater. Eng. Perform., 27(6), 3102-3111 (2018). https://doi.org/10.1007/s11665-018-3390-y
  16. K. Kanlayasiri and N. Meesathien, "Effects of zinc oxide nanoparticles on properties of SAC0307 lead-free solder paste", Adv. Mater. Sci. Eng., 2018, 1-10 (2018). https://doi.org/10.1155/2018/3750742
  17. J. Hlinka, M. Berczeli, G. Buza and Z. Weltsch, "Wetting properties of Nd: YAG laser treated copper by SAC solders", Solder. Surf. Mt. Technol., 29(2), 69-74 (2017). https://doi.org/10.1108/SSMT-01-2016-0003
  18. J. Hlinka, Z. Fogarassy, A. Cziraki and Z. Weltsch, "Wetting properties, recrystallization phenomena and interfacial reactions between laser treated Cu substrate and SAC305 solder", Appl. Surf. Sci., 501, 144127 (2020). https://doi.org/10.1016/j.apsusc.2019.144127
  19. C. E. Ho, S. P. Yang, P. T. Lee, C. Y. Lee, C. C. Chen and T. T. Kuo, "IMC microstructure modification and mechanical reinforcement of Sn-Ag-Cu/Cu microelectronic joints through an advanced surface finish technique", J. Mater. Res. Technol., 11, 1895-1910 (2021). https://doi.org/10.1016/j.jmrt.2021.02.029
  20. Z. Zhang, J. Chen, J. Wang, Y. Han, Z. Yu, Q. Wang, P. Zhang and S. Yang, "Effects of solder thickness on interface behavior and nanoindentation characteristics in Cu/Sn/Cu microbumps", Weld. world, 1-11 (2022)
  21. S. H. Rajendran, S. J. Hwang and J. P. Jung, "Shear strength and aging characteristics of sn-3.0 ag-0.5 cu/cu solder joint reinforced with zro2 nanoparticles", Metals, 10(10), 1295 (2020). https://doi.org/10.3390/met10101295
  22. G. Ban, F. Sun, Y. Liu and S. Cong, "Effect of nano-Cu addition on microstructure evolution of Sn0. 7Ag0. 5Cu-BiNi/Cu solder joint", Solder. Surf. Mt. Technol., 29, 92-98 (2017). https://doi.org/10.1108/SSMT-06-2016-0013
  23. L. Sun, M. H. Chen, C. C. Wei, L. Zhang and F. Yang, "Effect of thermal cycles on interface and mechanical property of low-Ag Sn1. 0Ag0. 5Cu (nano-Al)/Cu solder joints", J. Mater. Sci. Mater. Electron., 29(12), 9757-9763 (2018). https://doi.org/10.1007/s10854-018-9014-3
  24. A. K. Gain and L. Zhang, "Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin-bismuth solder", J. Mater. Sci. Mater. Electron., 28(20), 15718-15730 (2017). https://doi.org/10.1007/s10854-017-7465-6
  25. Y. Tang, S. M. Luo, K. Q. Wang and G. Y. Li, "Effect of Nano-TiO2 particles on growth of interfacial Cu6Sn5 and Cu3Sn layers in Sn3. 0Ag0. 5CuxTiO2 solder joints", J. Alloys Compd., 684, 299-309 (2016). https://doi.org/10.1016/j.jallcom.2016.05.148
  26. N. Ismail, A. Jalar, M. Abu Bakar, N. S. Safee, W. Y. Wan Yusoff and A. Ismail, "Microstructural evolution and micromechanical properties of SAC305/CNT/CU solder joint under blast wave condition", Solder. Surf. Mt. Technol., 33(1), 47-56. (2021). https://doi.org/10.1108/SSMT-11-2019-0035
  27. N. Jiang, L. Zhang, Z. Q. Liu, L. Sun, M. Y. Xiong and K. K. Xu, "Influences of doping Ti nanoparticles on microstructure and properties of Sn58Bi solder", J. Mater. Sci. Mater. Electron., 30(19), 17583-17590 (2019). https://doi.org/10.1007/s10854-019-02107-0
  28. A. Yakymovych, P. Svec, L. Orovcik, O. Bajana and H. Ipser, "Nanocomposite SAC Solders: The Effect of Adding Ni and Ni-Sn Nanoparticles on Morphology and Mechanical Properties of Sn-3.0Ag-0.5Cu Solders" J. Electron. Mater., 47, 117-123 (2018). https://doi.org/10.1007/s11664-017-5834-9
  29. S. Chellvarajoo and M. Z. Abdullah, "Microstructure and mechanical properties of Pb-free Sn-3.0 Ag-0.5 Cu solder pastes added with NiO nanoparticles after reflow soldering process", Mater. Design, 90, 499-507 (2016). https://doi.org/10.1016/j.matdes.2015.10.142
  30. Y. Plevachuk, O. Tkach, P. Svec, A. Yakymovych and L. Orovcik, "Nanocomposite solders: An influence of un-coated and Au-coated carbon nanotubes on morphology of Cu/Sn-3.0 Ag-0.5 Cu/Cu solder joints", 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Ukraine, IEEE Components, 722-725 (2019).
  31. S. Tikale and K. N. Prabhu, "Performance of MWCNT-Reinforced SAC0307/Cu Solder Joint Under Multiple Reflow Cycles", Trans. Indian. Inst. Met., 71(11), 2693-2698 (2018). https://doi.org/10.1007/s12666-018-1431-8
  32. L. Sun, L. Zhang, L. Xu, S. J. Zhong, J. Ma and L. Bao, "Effect of nano-Al addition on properties and microstructure of low-Ag content Sn-1Ag-0.5Cu solders", J. Mater. Sci. Mater. Electron., 27, 7665-7673 (2016). https://doi.org/10.1007/s10854-016-4751-7