• Title/Summary/Keyword: electronic control unit

Search Result 456, Processing Time 0.032 seconds

Authentication Scheme using Biometrics in Electronic Control Unit(ECU) (자동차 전자제어시스템(ECU)에서 생체인증을 이용한 인증기법)

  • Lee, Kwang-Jae;Lee, Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.818-820
    • /
    • 2013
  • 현재 IT기술과 자동차기술을 융합한 지능형 자동차를 개발 중에 있다. 지능형자동차에 대한 개발이 활발하게 이루어지면서 무선 네트워크 데이터 통신이 가능하게 된 시점이다. 하지만 외부에서 네트워크에 침입하여 지능형자동차의 보안을 위협할 수 있어 그에 따른 지능형자동차 보안솔루션이 필요하다. 하지만 아직 미약한 수준의 단계에 있다. 이런 시점에서 지능형자동차개발에 문제가 되지 않도록 보안성이 높은 지능형자동차서비스를 위한 사용자 생체정보를 이용한 인증 기법을 제안하고자 한다.

Development of a 2-axis Delta Robot for Upper-limb Rehabilitation with Considering User Safety (사용자 안전요소를 고려한 상지 재활치료용 2축 델타로봇 개발)

  • Seung-Hwan Baek;Jun-Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • In this study, an end-effector robot which is a two-axis delta robot type for upper-limb rehabilitation is designed. It is not only rehabilitation functions that has designed robot but also mechanical and electrical safety devices were constructed to ensure patient safety. By constructing the two-axis delta robot is combined with an LM guide, the operating range and rigidity required for rehabilitation were secured. The electrical safety system which is required for the medical robot was designed, and a safety strategy was established to ensure patient safety and it is applied in the integrated safety circuit. The safety is considered in whole design process from the robot's mechanical design to the electric control unit.

A study on the improvement of Auxiliary Power Unit auto-shutdown of T-50 series aircraft based on analysis of ECU response characteristics (ECU 응답특성 분석을 통한 T-50 계열 항공기 보조동력장치 자동 꺼짐 개선에 관한 연구)

  • Park, Sung-Jae;Yoo, In-Je;Choi, Su-Jin;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.640-646
    • /
    • 2017
  • A GEN TEST of the auxiliary power unit of a T-50 series aircraft is performed as part of the operational test of its emergency power system on the ground before flight. At this time, the auxiliary power unit should be automatically turned off via the response signal of the ECU when power is not normally supplied to the emergency power system. If the correct operation of the emergency power system cannot be confirmed on the ground, it is not possible to proceed with the flight. This kind of defect is a major factor causing the operation rate of the aircraft to be decreased. The defect code identified by the ECU was confirmed as a defect in the inverter. However, the same defect was found after replacing the inverter. This report presents an improved method of identifying the cause of the defect by analyzing the response characteristics of the ECU and emergency power system and allows the ECU to be recognized as the cause of the defect if the inverter does not generate a voltage within a certain time. Also, the application of the improved method confirmed that it can satisfy the output request time of the emergency power system and effectively prevent the auto-shutdown of the auxiliary power unit.

Development and Optimization of Engine Module for Hybrid System Simulator (하이브리드 시스템 시뮬레이터용 엔진 모듈 개발과 최적화에 관한 연구)

  • Jeon, Dae-Il;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.14-22
    • /
    • 2010
  • Hybrid Electronic Vehicle (HEV) is one of the solutions of high oil price and environment problem. Recently, study of HEV is important for automobile industry. However HEV has a lot of components and there are many cases for assembling, it's impossible to test results from assembling by using real vehicles. To solve this problem, hybrid system simulator is required. The purpose of this study is to develop and optimize of engine module for hybrid system simulator. The commercial 1-D engine simulation program, WAVE is used to get the engine capacity and performance data and 1-D simulation model of base engine is compared with engine experiment results. Using the data, the engine module is developed based on the MATLAB Simulink. There are blocks of base engine, Single-CVVT engine and Dual-CVVT engine. The effect of acceleration and deceleration is applied to each engine block. In addition, the control and processing logics for CIS technology are developed. Finally the simulator operates FTP-72 mode test.

Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch (확률진폭 스위치에 의한 양자게이트의 함수 임베딩과 투사측정)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1027-1034
    • /
    • 2017
  • In this paper, we propose a new function embedding method that can measure mathematical projections of probability amplitude, probability, average expectation and matrix elements of stationary-state unit matrix at all control operation points of quantum gates. The function embedding method in this paper is to embed orthogonal normalization condition of probability amplitude for each control operating point into a binary scalar operator by using Dirac symbol and Kronecker delta symbol. Such a function embedding method is a very effective means of controlling the arithmetic power function of a unitary gate in a unitary transformation which expresses a quantum gate function as a tensor product of a single quantum. We present the results of evolutionary operation and projective measurement when we apply the proposed function embedding method to the ternary 2-qutrit cNOT gate and compare it with the existing methods.

A Modeling of Realtime Fuel Comsumption Prediction Using OBDII Data (OBDII 데이터 기반의 실시간 연료 소비량 예측 모델 연구)

  • Yang, Hee-Eun;Kim, Do-Hyun;Choe, Hoseop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • This study presents a method for realtime fuel consumption prediction using real data collected from OBDII. With the advent of the era of self-driving cars, electronic control units(ECU) are getting more complex, and various studies are being attempted to extract and analyze more accurate data from vehicles. But since ECU is getting more complex, it is getting harder to get the data from ECU. To solve this problem, the firmware was developed for acquiring accurate vehicle data in this study, which extracted 53,580 actual driving data sets from vehicles from January to February 2019. Using these data, the ensemble stacking technique was used to increase the accuracy of the realtime fuel consumption prediction model. In this study, Ridge, Lasso, XGBoost, and LightGBM were used as base models, and Ridge was used for meta model, and the predicted performance was MAE 0.011, RMSE 0.017.

The impact of security and privacy risk on smart car safety and trust (보안과 프라이버시 위험이 스마트카 안전과 신뢰에 미치는 영향)

  • Soonbeom Kwon;Hwansoo Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.9-19
    • /
    • 2023
  • Smart cars, which incorporate information and communication technologies (ICT) to improve driving safety and convenience for drivers, have recently emerged. However, the increasing risk of automotive cybersecurity due to the vulnerability of electronic control units (ECUs) and automotive networks, which are essential for realizing the autonomous driving functions of smart cars, is a major obstacle to the widespread adoption of smart cars. Although there have been only a few real-world cases of smart car hacking, drivers' concerns about the security of smart cars can have a negative impact on their proliferation. Therefore, it is important to understand the risk factors perceived by drivers and the trust in smart cars formed through them in order to promote the future diffusion of smart cars. This study examines the risk factors that affect the formation of trust in smart cars, focusing on security and privacy, and analyzes how these factors affect safety perceptions and trust in smart cars.

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

Reduced Error Model for Integrated Navigation of Unmanned Autonomous Underwater Vehicle (무인자율수중운동체의 보정항법을 위한 축소된 오차 모델)

  • Park, Yong-Gonjong;Kang, Chulwoo;Lee, Dal Ho;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.584-591
    • /
    • 2014
  • This paper presents a novel aided navigation method for AUV (Autonomous Underwater Vehicles). The navigation system for AUV includes several sensors such as IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and depth sensor. In general, the $13^{th}$ order INS error model, which includes depth error, velocity error, attitude error, and the accelerometer and gyroscope biases as state variables is used with measurements from DVL and depth sensors. However, the model may degrade the estimation performance of the heading state. Therefore, the $11^{th}$ INS error model is proposed. Its validity is verified by using a degree of observability and analyzing steady state error. The performance of the proposed model is shown by the computer simulation. The results show that the performance of the reduced $11^{th}$ order error model is better than that of the conventional $13^{th}$ order error model.

Bidirectional dc-to-dc Converter Employing Dual Inductor for Current Ripple Reduction (전류 리플 저감을 위한 듀얼 인덕터 방식의 양방향 dc-to-dc 컨버터)

  • Lee, Gi Yeong;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.531-537
    • /
    • 2018
  • This paper propose a bidirectional dc-to-dc converter employing dual inductor for current ripple reduction. Conventional bidirectional dc-to-dc converter uses a single inductor for two different modes; boost and buck; therefore it is difficult to satisfy the optimized inductance value for each mode. To improve this problem, the proposed converter adds two switches, a diode, and one inductor. By proper switching of the additional switch, the proposed converter operates with a inductor in boost mode, but it works with dual inductor in buck mode. Hence in both modes the proposed bidirectional converter can be operated with optimized inductance values. Most of all the optimized inductance in buck mode can reduce the current ripple and its effective value(rms), which are directly related to the temperature increase resulted in short lifetime of battery. To verify the validity of the proposed approach, we first analyzes the operation of the proposed converter theoretically, and implement computer-aided simulations and experiments using a prototype.