Browse > Article
http://dx.doi.org/10.5370/KIEE.2018.67.4.531

Bidirectional dc-to-dc Converter Employing Dual Inductor for Current Ripple Reduction  

Lee, Gi Yeong (Dept. of Control and Instrumentation Engineering, Hanbat National University)
Kang, Feel-soon (Dept. of Electrical and Electronic Engineering, Hanbat National University)
Publication Information
The Transactions of The Korean Institute of Electrical Engineers / v.67, no.4, 2018 , pp. 531-537 More about this Journal
Abstract
This paper propose a bidirectional dc-to-dc converter employing dual inductor for current ripple reduction. Conventional bidirectional dc-to-dc converter uses a single inductor for two different modes; boost and buck; therefore it is difficult to satisfy the optimized inductance value for each mode. To improve this problem, the proposed converter adds two switches, a diode, and one inductor. By proper switching of the additional switch, the proposed converter operates with a inductor in boost mode, but it works with dual inductor in buck mode. Hence in both modes the proposed bidirectional converter can be operated with optimized inductance values. Most of all the optimized inductance in buck mode can reduce the current ripple and its effective value(rms), which are directly related to the temperature increase resulted in short lifetime of battery. To verify the validity of the proposed approach, we first analyzes the operation of the proposed converter theoretically, and implement computer-aided simulations and experiments using a prototype.
Keywords
Bidirectional converter; Electric Vehicle(EV); Inductor; Motor Control Unit(MCU);
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Liqin, D. J. Patterson, and J. L. Hudgins, "High power current sensorless 16-phase interleaved DC-DC converter for hybrid vehicle application," IEEE Trans. on Power Elect., vol. 27, no. 3, pp. 1141-1151, Mar. 2012.   DOI
2 R. K. Singh, "A Magnetically Coupled Feedback-Clamped Optimal Bidirectional Battery Charger," IEEE Trans. on Magnetics, vol. 60, no 2, Feb. 2013.
3 C. Zheng, Y. Park, W. Lim, S. W. Cha, "A Study on Battery SOC Estimation by Regenerative Breaking in Electric Vehicles," Trans. of KSAE, vol. 20, no. 1, pp 119-123, 2012.
4 Y. I. Park, "Hybrid Vehicle III," Trans. on KSAE, vol. 26, no. 4, pp. 92-102, 2004.
5 K. S. Kim, et. al., "Green Car Electric Power System," KIPE technology Report. pp. 1-26, 2010.
6 G. Zorpette, "The smart hybrid," IEEE Spectrum, vol. 41, no. 1, pp. 44-47, 2004.   DOI
7 A. Y. Saber and G. K. Venayagamoorthy, "Plug-in vehicles and renew-able energy sources for cost and emission reductions," IEEE Trans. Ind. Elec., vol. 58, no. 4, pp. 1229-1238, 2011.   DOI
8 A. Hajimiragha, C. A., M. W. Fowler, and A. Elkamel, "Optimal transition to plug-in hybrid electric vehicles in Ontario, Canada, considering the electricity-grid limitations," IEEE Trans. Ind. Elec., vol. 57, no. 2, pp. 690-701, 2011.   DOI
9 Y. J. Lee, A. K. Khaligh, and A. Emdi, "Advanced integrated bidirectional ac/dc and dc/dc converter for plug-in hybrid electric vehicles," IEEE Trans. on Vehi. Tech., vol. 58, no. 8, pp. 3970-3980, 2009.   DOI
10 J. Y. Yang, C. W. Yeon, S. S. Park, S. W. Choi, R. K. Park, and S. G. Jang, "Design of a 49kW high efficiency bidirectional DC-DC converter for charge and discharge of high voltage battery in HEV," in KIPE Proc. Nov. 2007, pp. 21-23.
11 Toyota Environmental Technology Report, Toyota Hybrid System THS II.
12 M. T. Tsai, D. Dhen, C. J. Chen, C. H. Chiu and W. H. Chang, "Modeling and Design of Current Balancing Control in Voltage-Mode Multiphase Interleaved Voltage Regulators," IEEE Power Electronics Conference, pp. 881-887, June 2010.
13 A. Jossen, "Fundamentals of battery dynamic," Journal of Power Source, vol. 154, no. 2, pp. 530-538, Mar. 2006.   DOI
14 J. C. Yoo, "Modeling and Experiments for the Breakdown of Fuel Consumption in a Hybrid Electric Vehicle," Master Thesis of Mechanical Eng., Ajou Univ., 2002.
15 S. Delprat, J. Lauber, T. M. Guerra and J. Rimaux, "Control of a Parallel Hybrid Powertrain : Optimal Control," IEEE Trans. on Vehi. Tech., vol. 53, no. 3, pp. 872-881, May. 2004.
16 J. Moreno, M. E. Ortuzar and J. W. Dixon, "Energy-Management System for a Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks," IEEE Trans. on Ind. Elec., vol. 53, no. 2, pp. 614-623, Apr. 2006.   DOI
17 J. H. Zhang, J. S. Lai, R. Y. Kim, and W. S. Yu, "High-power density design of a soft-switching high-power bidirectional DC-DC converter," IEEE Trans. on Power Elec., vol. 22, no. 4, pp. 1145-1153, July 2007.
18 J. B. Baek, W. I. Choi, and B. H. Cho, "Digital adaptive frequency modulation for bidirectional DC-DC converter," IEEE Trans. on Ind. Elec., vol. 60, no. 11, pp. 5167-5176, Nov. 2013.   DOI
19 W. J. Lee, J. K. Eom, B. M. Han, and H. J. Cha, "Design and experiment of three-phase interleaved DC-DC converter for 5kW lead-acid battery charger," Journal of Power Electronics, vol. 16, no. 3, pp. 227-233, Jun. 2011.
20 J. H. Jung, B. G. Seo, C. K. Keun, E. C. Nho, I. D. Kim, H. G. Kim, and T. W. Chun, "New soft-switching method of 3-phase interleaved bidirectional DC-DC converter for battery charging and discharging," Journal of Power Electronics, vol. 19, no. 4, pp. 383-390, Aug. 2014.