• Title/Summary/Keyword: electron temperature measurement

Search Result 371, Processing Time 0.028 seconds

Synthesis and Surface Characterization of Carbon Nanotubes by Hot-Filament Plasma Enhanced Chemical Vapor Deposition (Hot-filament 화학기상 증착법에 의한 탄소나노튜브의 성장 및 표면 특성)

  • Choi, Eun-Chang;Kim, Jung-Tae;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • In this paper, the catalyst layer is deposited on silicon substrate using magnetron sputtering system and carbon nanotubes(CNTs) were grown in $NH_3\;and\; C_2H_2$ gas by hot-filament plasma enhanced chemical vapor deposition (HFPECVD) system. A growth temperature of carbon nanotubes was changed from $350^{\circ}C\;to\;650^{\circ}C\;by\;100^{\circ}C$. We observed the shape of CNTs by a field-emission scanning electron microscope(FE-SEM) measurement and analyzed the surface characteristic of CNTs layer by contact angle measurement. That is, the growth temperature of CNTs is the important factor leads to the variation of the properties.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.

Influence of Selenization Temperature on the Properties of Cu2ZnSnSe4 Thin Films (Selenization 온도가 Cu2ZnSnSe4 박막의 특성에 미치는 영향)

  • Yeo, Soo Jung;Gang, Myeng Gil;Moon, Jong-Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.97-100
    • /
    • 2015
  • The kesterite $Cu_2ZnSnSe_4$ (CZTSe) thin film solar cells were synthesized by selenization of sputtered Cu/Sn/Zn metallic precursors on Mo coated soda lime glass substrate in Ar atmosphere. Cu/Sn/Zn metallic precursors were deposited by DC magnetron sputtering process with 30 W power at room temperature. As-deposited metallic precursors were placed in a graphite box with Se pellets and selenized using rapid thermal processing furnace at various temperature ($480^{\circ}C{\sim}560^{\circ}C$) without using a toxic $H_2Se$ gas. Effects of Selenization temperature on the morphological, crystallinity, electrical properties and cell efficiency were investigated by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD), J-V measurement system and solar simulator. Further details about effects of selenization temperature on CZTSe thin films will be discussed.

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

Carbon Nano-structured Films on Chrome Electrodes with Excellent Electron Emission Characteristics

  • Koh, Ken-Ha;Park, Kyung-Ho;Choi, Seung-Ho;Lee, Kyung-Mun;Oh, Soo-Ghee;Lee, Soon-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.55-56
    • /
    • 2000
  • We report the fabrication of carbon nanostureture films with excellent electron-emission characteristics on chrome electrodes using a pre-deposited transition metal catalyst layer. The emission current densities of 1 ${\mu}A/cm^2$ and 1 $mA/cm^2$ were measured at the electric field of 2.5 and 4.8 $V/{\mu}m$, respectively, and the current fluctuation of less than 2.5% was observed at the average current density 211 ${\mu}A/cm^2$ for the measurement duration of 20 minutes. We counted more than ${\sim}10^4$ emission sites per $cm^2$ from the emission images, and also noticed good mechanical stability. Moreover, we were able to fabricate good electron-emitting carbon films on chrome electrodes on Corning glass substrates at the nominal temperature below $650^{\circ}C$.

  • PDF

Visualization of Plasma Produced in a Laser Beam and Gas Jet Interaction (레이저와 질소가스 상호충돌로부터 발생되는 플라스마 가시화)

  • Kim Jong-Uk;Kim Chang-Bum;Kim Guang-Hoon;Lee Hae-June;Suk Hy-Yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • In the current study, characteristics of the laser-induced plasma were investigated in a gas filled chamber or in a gas jet by using a relatively low intensity laser $(I\;\leq\;5\;\times\;10^{12}\;W/cm^2)$. Temporal evolutions of the produced plasma were measured using the shadow visualization and the shock wave propagation as well as the electron density profiles in the plasma channel was measured using the Mach-Zehnder interferometry. Experimental results such as the structure of the produced plasma, shock propagation speed $(V_s)$, electron density profiles $(n_e)$, and the electron temperature $(T_e)$ are discussed in this study. Since the diagnostic laser pulse occurs over short time intervals compared to the hydrodynamic time scales of expanding plasma or a gas jet, all the transient motion occurring during the measurement is assumed to be essentially frozen. Therefore, temporally well-resolved quantitative measurements were possible in this study.

  • PDF

Growth and characterization of superconductor-ferromagnet thin film heterostructure La1.85Sr0.15CuO4/SrRuO3

  • Kim, Youngdo;Sohn, Byungmin;Kim, Changyoung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.10-13
    • /
    • 2021
  • Superconductor-ferromagnet thin film heterostructure is an ideal system for studying the interplay between superconductivity and ferromagnetism. These two antagonistic properties combined in thin film heterostructure create interesting proximity effects such as spin-triplet superconductivity. Thin film heterostructure of optimally doped La2-xSrxCuO4(LSCO) cuprate superconductor and SrRuO3(SRO) ruthenate ferromagnet has been grown by pulsed laser deposition. Its temperature-dependent resistivity and Hall effect measurements show that our LSCO/SRO heterostructure has both superconductivity and ferromagnetism. In the Hall effect measurement results, we find additional hump-like structures appear in the anomalous Hall effect signal in the vicinity of superconducting transition. We conclude that giant magnetoresistance of the LSCO layer distorts the AHE signal, which results in a hump-like structure.

Detection of Radiation Degradation of LDPE by ESR Spectroscopy (전자스핀공명을 이용한 저밀도 폴리에틸렌의 방사선 열화 검지)

  • Kim Ki-Yup;Lee Chung;Ryu Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.81-86
    • /
    • 2005
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated up to 800kGy using a $Co^{60}\;\gamma-ray$ at a dose rate of 5kGy/hr in the presence of air atmosphere at room temperature. After irradiation, storing for 2 weeks, free radical measurement of LDPE has established by electron spin resonance(ESR). ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and decreased with the time. The radical types showed alkyl, allyl, and peroxy radical with the irradiation, these changed to peroxy radical with the time.

The Pulsed Id-Vg methodology and Its Application to the Electron Trapping Characterization of High-κ gate Dielectrics

  • Young, Chadwin D.;Heh, Dawei;Choi, Ri-No;Lee, Byoung-Hun;Bersuker, Gennadi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.79-99
    • /
    • 2010
  • Pulsed current-voltage (I-V) methods are introduced to evaluate the impact of fast transient charge trapping on the performance of high-k dielectric transistors. Several pulsed I-V measurement configurations and measurement requirements are critically reviewed. Properly configured pulsed I-V measurements are shown to be capable of extracting such device characteristics as trap-free mobility, trap-induced threshold voltage shift (${\Delta}V_t$), as well as effective fast transient trap density. The results demonstrate that the pulsed I-V measurements are an essential technique for evaluating high-$\kappa$ gate dielectric devices.