DOI QR코드

DOI QR Code

Synthesis and Surface Characterization of Carbon Nanotubes by Hot-Filament Plasma Enhanced Chemical Vapor Deposition

Hot-filament 화학기상 증착법에 의한 탄소나노튜브의 성장 및 표면 특성

  • Choi, Eun-Chang (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Jung-Tae (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Yong-Seob (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Choi, Won-Seok (Center for Advanced Plasma Surface Technology, Sungkyunkwan University) ;
  • Hong, Byung-You (School of Information and Communication Engineering, Sungkyunkwan University)
  • 최은창 (성균관대학교 정보통신공학부) ;
  • 김정태 (성균관대학교 정보통신공학부) ;
  • 박용섭 (성균관대학교 정보통신공학부) ;
  • 최원석 (성균관대학교 플라즈마응용표면기술연구센터) ;
  • 홍병유 (성균관대학교 정보통신공학부)
  • Published : 2007.05.30

Abstract

In this paper, the catalyst layer is deposited on silicon substrate using magnetron sputtering system and carbon nanotubes(CNTs) were grown in $NH_3\;and\; C_2H_2$ gas by hot-filament plasma enhanced chemical vapor deposition (HFPECVD) system. A growth temperature of carbon nanotubes was changed from $350^{\circ}C\;to\;650^{\circ}C\;by\;100^{\circ}C$. We observed the shape of CNTs by a field-emission scanning electron microscope(FE-SEM) measurement and analyzed the surface characteristic of CNTs layer by contact angle measurement. That is, the growth temperature of CNTs is the important factor leads to the variation of the properties.

본 연구에서는 실리콘 웨이퍼 위에 마그네트론 스퍼터링 시스템을 이용하여 Ni 촉매 층을 증착시키고, $NH_3$$C_2H_2$ gas를 이용하여 탄소나노튜브를 성장시켰다. Hot-filament 플라즈마 화학기상 증착법으로 탄소나노튜브의 성장 온도는 350, 450, 550, $650^{\circ}C$로 변화시켰으며, 성장되어진 탄소나노튜브는 field emission scanning electron microscope(FESEM) 분석을 하여 관찰하였고, 접촉각 측정법을 이용하여 탄소나노튜브 층의 특성을 분석하였다. 결과적으로 성장 온도는 탄소나노튜브의 성장 특성을 변화시키는 중요한 요소이다.

Keywords

References

  1. S. Ijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. H. Dai, E. W. Wong, C. M. Lieber, Science 272, 1179 (1995) https://doi.org/10.1126/science.272.5265.1179
  3. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature 382, 54 (1996) https://doi.org/10.1038/382054a0
  4. N. Hamada, A. Sawada, A. Oshiyama, Phys. Rev. Lett 68, 1579 (1992) https://doi.org/10.1103/PhysRevLett.68.1579
  5. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992) https://doi.org/10.1103/PhysRevLett.68.631
  6. E. Frackowiak, F. Beguin, Carbon 39, 937 (2001) https://doi.org/10.1016/S0008-6223(00)00183-4
  7. S. Uemura, T. Nagasako, J. Yotani, T. Shimojo, Y. Saito, SID' 98 Digest 1052 (1998)
  8. S. M. Lee, K. S. Park, Y. C. Choi, Y. S. Park, J. M. Bok, Synthetic Metals 113, 209 (2000) https://doi.org/10.1016/S0379-6779(99)00275-1
  9. J. M. Bonard, Appl. Phys. Lett 73, 918, (1998) https://doi.org/10.1063/1.122037
  10. Y. Saito, S. Uemura, Carbon 38, 169 (2000) https://doi.org/10.1016/S0008-6223(99)00139-6
  11. T. E. Muller, D. G. Reid, W. K. Hsu, J. P. Hare, H. W. Kroto, D. R. Walton, Carbon 7, 951 (1997)
  12. C. J. Lee, J. H. Park, S. W. Han, J. S. Ihm, Chem. Phys. Lett 337, 398 (2001) https://doi.org/10.1016/S0009-2614(01)00202-0
  13. J. H. Han, B. S. Moon, W. S. Young, J. B. Yoo, C. Y Park, Surf. Coat. Tech. 131, 93 (2000) https://doi.org/10.1016/S0257-8972(00)00766-0
  14. Z. F. Ren, Science 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  15. J. H. Han, Surf. Coat. Tech. 3, 93 (2000)
  16. I. S. Bea, S. H. Cho, S. B. Lee, Y. Kim and J. H. Boo, Surf. Coat. Tech. 193, 142 (2005) https://doi.org/10.1016/j.surfcoat.2004.07.022