Browse > Article
http://dx.doi.org/10.5140/JASS.2016.33.2.109

The Spectral Sharpness Angle of Gamma-ray Bursts  

Yu, Hoi-Fung (Max Planck Institute for Extraterrestrial Physics)
van Eerten, Hendrik J. (Max Planck Institute for Extraterrestrial Physics)
Greiner, Jochen (Max Planck Institute for Extraterrestrial Physics)
Sari, Re'em (The Hebrew University of Jerusalem)
Bhat, P. Narayana (Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville)
Kienlin, Andreas von (Max Planck Institute for Extraterrestrial Physics)
Paciesas, William S. (Universities Space Research Association)
Preece, Robert D. (Space Science Department, University of Alabama in Huntsville)
Publication Information
Journal of Astronomy and Space Sciences / v.33, no.2, 2016 , pp. 109-117 More about this Journal
Abstract
We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
Keywords
gamma-rays; stars; gamma-ray burst; general; radiation mechanisms; non-thermal; radiation mechanisms; thermal; methods; data analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ackermann M, Ajello M, Baldini L, Barbiellini G, Baring MG, et al., Constraining the high-energy emission from gamma-ray bursts with Fermi, Astrophys. J. 754, 121-140 (2012). http://dx.doi.org/10.1088/0004-637X/754/2/121   DOI
2 Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, et al., The large area telescope on the Fermi Gamma-Ray Space Telescope Mission, Astrophys. J. 697, 1071-1102 (2009). http://dx.doi.org/10.1088/0004-637X/697/2/1071   DOI
3 Axelsson M, Borgonovo L, The width of gamma-ray burst spectra, Mon. Not. Roy. Astron. Soc. 447, 3105-3154 (2015). http://dx.doi.org/10.1093/mnras/stu2675   DOI
4 Band D, Matteson J, Ford L, Schaefer B, Palmer D, et al., BATSE observations of gamma-ray burst spectra. I. Spectral diversity, Astrophys. J. 413, 281-292 (1993). http://dx.doi.org/10.1086/172995   DOI
5 Bhat PN, Variability time scales of long, short GRBs, eprint arXiv:1307.7618 (2013).
6 Beloborodov AM, Collisional mechanism for gamma-ray burst emission, Mon. Not. Roy. Astron. Soc. 407, 1033-1047 (2010). http://dx.doi.org/10.1111/j.1365-2966.2010.16770.x   DOI
7 Beloborodov AM, Regulation of the spectral peak in gammaray bursts, Astrophys. J. 764, 157-168 (2013). http://dx.doi.org/10.1088/0004-637X/764/2/157   DOI
8 Beniamini P, Piran T, The emission mechanism in magnetically dominated gamma-ray burst outflows, Mon. Not. Roy. Astron. Soc. 445, 3892-3907 (2014). http://dx.doi.org/10.1093/mnras/stu2032   DOI
9 Burgess JM, Preece RD, Baring MG, Briggs MS, Connaughton V, et al., Constraints on the synchrotron shock model for the Fermi GRB 090820A observed by Gamma-ray Burst Monitor, Astrophys. J. 741, 24-29 (2011). http://dx.doi.org/10.1088/0004-637X/741/1/24   DOI
10 Burgess JM, Preece RD, Connaughton V, Briggs MS, Goldstein A, et al., Time-resolved analysis of Fermi gamma-ray bursts with fast- and slow-cooled synchrotron photon models, Astrophys. J. 784, 17-34 (2014). http://dx.doi.org/10.1088/0004-637X/784/1/17   DOI
11 Crider A, Liang EP, Preece RD, Briggs MS, Pendleton GN, et al., The spectral evolution of gamma-ray bursts, in 193rd AAS Meeting, Austin, TX, 6-9 Jan 1999.
12 Deng W, Zhang B, Low energy spectral index, Ep evolution of quasi-thermal photosphere emission of gamma-ray bursts, Astrophys. J. 785, 112-126 (2014). http://dx.doi.org/10.1088/0004-637X/785/2/112   DOI
13 Ford LA, Band DL, Matteson JL, Briggs MS, Pendleton GN, et al., BATSE observations of gamma-ray burst spectra. II. Peak energy evolution in bright, long bursts, Astrophys. J. 439, 307-321 (1995). http://dx.doi.org/10.1086/175174   DOI
14 Drenkhahn G, Spruit HC, Efficient acceleration and radiation in Poynting flux powered GRB outflows, Astron. Astrophys. 391, 1141-1153 (2002). http://dx.doi.org/10.1051/0004-6361:20020839   DOI
15 Gill R, Thompson C, Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow, Astrophys. J. 796, 81-105 (2014). http://dx.doi.org/10.1088/0004-637X/796/2/81   DOI
16 Elliott J, Yu HF, Schmidl S, Greiner J, Gruber D, et al., Prompt emission of GRB 121217A from gamma-rays to the nearinfrared, Astron. Astrophys. 562, A100 (2014). http://dx.doi.org/10.1051/0004-6361/201322600   DOI
17 Giannios D, Prompt GRB emission from gradual energy dissipation, Astron. Astrophys. 480, 305-312 (2008). http://dx.doi.org/10.1051/0004-6361:20079085   DOI
18 Goldstein A, Preece RD, Mallozzi RS, Briggs MS, Fishman GJ, et al., The BATSE 5B gamma-ray burst spectral catalog, Astrophys. J. Suppl. Ser. 208, 21-50 (2013). http://dx.doi.org/10.1088/0067-0049/208/2/21   DOI
19 Golkhou VZ, Butler NR, Uncovering the intrinsic variability of gamma-ray bursts, Astrophys. J. 787, 90-98 (2014). http://dx.doi.org/10.1088/0004-637X/787/1/90   DOI
20 Goodman J, Are gamma-ray bursts optically thick?, Astrophys. J. Lett. 308, L47 (1986). http://dx.doi.org/10.1086/184741   DOI
21 Greiner J, Yu HF, Krühler T, Frederiks DD, Beloborodov A, et al., GROND coverage of the main peak of gamma-ray burst 130925A, Astron. Astrophys. 568, A75 (2014). http://dx.doi.org/10.1051/0004-6361/201424250   DOI
22 Katz JI, Low-frequency spectra of gamma-ray bursts, Astrophys. J. Lett. 432, L107-L109 (1994). http://dx.doi.org/10.1086/187523   DOI
23 Gruber D, Goldstein A, von Ahlefeld VW, Bhat PN, Bissaldi E, et al., The Fermi GBM gamma-ray burst spectral catalog: four years of data, Astrophys. J. Suppl. Ser. 211, 12-38 (2014). http://dx.doi.org/10.1088/0067-0049/211/1/12   DOI
24 Lloyd NM, Petrosian V, Synchrotron radiation as the source of gamma-ray burst spectra, Astrophys. J. 543, 722-732 (2000). http://dx.doi.org/10.1086/317125   DOI
25 Hu YD, Liang EW, Xi SQ, Peng FK, Lu RJ, et al., Internal energy dissipation of gamma-ray bursts observed with Swift: precursors, prompt gamma-rays, extended emission, and late X-ray flares, Astrophys. J. 789, 145-157 (2014). http://dx.doi.org/10.1088/0004-637X/789/2/145   DOI
26 Lazzati D, Morsony BJ, Margutti R, Begelman MC, Photospheric emission as the dominant radiation mechanism in long-duration gamma-ray bursts, Astrophys. J. 765, 103-109 (2013). http://dx.doi.org/10.1088/0004-637X/765/2/103   DOI
27 Lyutikov M, Blandford R, Gamma Ray Bursts as Electromagnetic Outflows, eprint arXiv:0312347 (2003).
28 Medvedev MV, Theory of “Jitter” radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks, Astrophys. J. 540, 704-714 (2000). http://dx.doi.org/10.1086/309374   DOI
29 Meegan C, Lichti G, Bhat PN, Bissaldi E, Briggs MS, et al., The Fermi Gamma-Ray Burst Monitor, Astrophys. J. 702, 971-804 (2009). http://dx.doi.org/10.1088/0004-637X/702/1/791   DOI
30 Meszaros P, Rees MJ, Gamma-ray bursts: multiwaveband spectral predictions for blast wave models, Astrophys. J. Lett. 418, L59-L62 (1993). http://dx.doi.org/10.1086/187116   DOI
31 Pe’er A, Physics of gamma-ray bursts prompt emission, Adv. Astron. 2015, 907321 (2015). http://dx.doi.org/10.1155/2015/907321   DOI
32 Meszaros P, Laguna P, Rees MJ, Gasdynamics of relativistically expanding gamma-ray burst sources - Kinematics, energetics, magnetic fields, and efficiency, Astrophys. J. 415, 181-190 (1993). http://dx.doi.org/10.1086/173154   DOI
33 Paczynski B, Gamma-ray bursters at cosmological distances, Astrophys. J. Lett. 308, L43-L46 (1986). http://dx.doi.org/10.1086/184740   DOI
34 Peng FK, Liang EW, Wang XY, Hou SJ, Xi SQ, et al., Photosphere emission in the X-ray flares of Swift gamma-ray bursts, implications for the fireball properties, Astrophys. J. 795, 155-169 (2014). http://dx.doi.org/10.1088/0004-637X/795/2/155   DOI
35 Pe’er A, Ryde F, A theory of multicolor blackbody emission from relativistically expanding plasmas, Astrophys. J. 732, 49-56 (2011). http://dx.doi.org/10.1088/0004-637X/732/1/49   DOI
36 Pe’er A, Meszaros P, Rees MJ, The observable effects of a photospheric component on GRB and XRF prompt emission spectrum, Astrophys. J. 642, 995-1003 (2006). http://dx.doi.org/10.1086/501424   DOI
37 Piran T, Gamma-ray bursts and the fireball model, Phys. Rep. 314, 575-667 (1999). http://dx.doi.org/10.1016/S0370-1573(98)00127-6   DOI
38 Preece RD, Briggs MS, Mallozzi RS, Pendleton GN, Paciesas WS, et al., The synchrotron shock model confronts a “Line of Death” in the BATSE Gamma-Ray Burst Data, Astrophys. J. Lett. 506, L23-L26 (1998). http://dx.doi.org/10.1086/311644   DOI
39 Preece RD, Briggs MS, Giblin TW, Mallozzi RS, Pendleton GN, et al., On the consistency of gamma-ray burst spectral indices with the synchrotron shock model, Astrophys. J. 581, 1248-1255 (2002). http://dx.doi.org/10.1086/344252   DOI
40 Rees MJ, Meszaros P, Relativistic fireballs: energy conversion and time-scales, Mon. Not. Roy. Astron. Soc. 258, 41P-43P (1992). http://dx.doi.org/10.1093/mnras/258.1.41P   DOI
41 Rees MJ, Meszaros P, Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J. 430, L93-L96 (1994). http://dx.doi.org/10.1086/187446   DOI
42 Tavani M, A shock emission model for gamma-ray bursts. II. Spectral properties, Astrophys. J. 466, 768-778 (1996). http://dx.doi.org/10.1086/177551   DOI
43 Ryde F, Pe’er A, Nymark T, Axelsson M, Moretti E, et al., Observational evidence of dissipative photospheres in gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 415, 3693-3705 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.18985.x   DOI
44 Starling RLC, Page KL, Pe’er A, Beardmore AP, Osborne JP, A search for thermal X-ray signatures in gamma-ray bursts – I. Swift bursts with optical supernovae, Mon. Not. Roy. Astron. Soc. 427, 2950-2964 (2012). http://dx.doi.org/10.1111/j.1365-2966.2012.22116.x   DOI
45 Tavani M, Shock high-energy emission mechanisms applied to SGRs and GRBs, Astrophys. Space Sci. 231, 181-186 (1995). http://dx.doi.org/10.1007/BF00658612   DOI
46 Thompson C, A model of gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 270, 480-498 (1994). http://dx.doi.org/10.1093/mnras/270.3.480   DOI
47 Uhm ZL, Zhang B, Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism, Nature Phys. 10, 351-356 (2014). http://dx.doi.org/10.1038/nphys2932   DOI
48 van Eerten HJ, Simulation and physical model based gamma-ray burst afterglow analysis, J. High Energy Astrophys. 7, 23-24 (2015). http://dx.doi.org/10.1016/j.jheap.2015.04.004   DOI
49 Vurm I, Beloborodov AM, Radiative transfer models for gamma-ray bursts, eprint arXiv:1506.01107 (2015).
50 Vurm I, Beloborodov AM, Poutanen J, Gamma-ray bursts from magnetized collisionally heated jets, Astrophys. J. 738, 77-89 (2011). http://dx.doi.org/10.1088/0004-637X/738/1/77   DOI
51 Yu HF, Greiner J, van Eerten H, Burgess JM, Bhat PN, et al., Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor, Astron. Astrophys. 573, A81 (2015a) http://dx.doi.org/10.1051/0004-6361/201424858   DOI
52 Zhang B, Gamma-ray burst prompt emission, Int. J. Mod. Phys. D 23, 1430002 (2014). http://dx.doi.org/10.1142/S021827181430002X   DOI
53 Yu HF, van Eerten HJ, Greiner J, Sari R, Bhat PN, et al., The sharpness of gamma-ray burst prompt emission spectra, Astron. Astrophys. 583, A129 (2015b). http://dx.doi.org/10.1051/0004-6361/201527015   DOI
54 Yu HF, Preece RD, Greiner J, Bhat PN, Bissaldi E, et al., The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years, Astron. Astrophys. 588, A135 (2016). http://dx.doi.org/10.1051/0004-6361/201527509   DOI