• Title/Summary/Keyword: electrode structure

Search Result 1,518, Processing Time 0.028 seconds

IBS electrode structure for enhanced performance in ac PDP

  • Yang, Seung-Hee;Moon, Jae-Seung;Kim, Kwang-Nyun;Moon, Cheol-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.589-592
    • /
    • 2007
  • In this paper, we propose IBS(ITO-BUS Separated) electrode structure. BUS electrode lines are placed apart from the ITO electrode lines, and they are electrically connected with vertical auxiliary electrodes. We varied the lengths of the vertical electrodes as 70, 120, 320um. The highest luminous efficiency and the largest IR emission peak were obtained for 70um length.

  • PDF

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode ($Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성)

  • Seo, Min-Su;Hong, Ki-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

Effect of Hump Electrode on the Discharge Voltage of ac PDP with Fence Electrode (Fence 전극을 가진 ac PDP의 방전전압특성에 미치는 돌기 전극의 영향)

  • Dong, Eun-Joo;Ok, Jung-Woo;Yoon, Cho-Rom;Lee, Hae-June;Lee, Ho-Joon;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.261-267
    • /
    • 2008
  • One of the most important issues in fence-type PDP is low luminance and luminous efficiency. To improve luminance and luminous efficiency, new sustain electrode structure which contains long discharge gap is necessary. However, it causes rise of firing voltage. In this paper, a new fence electrode structure is proposed in order to solve these problems. To drop the firing voltage, tow hump shaped electrodes is added on the main discharge electrode, and distance between two humps is controlled. The experimental results show that the test panel with the narrow horizontal gap(40um) between two humps shows low firing voltage by 17V compared with 80um gap in spit of similar luminance and luminous efficiency.

TFD Device with Symmetrical Structure of Flexible Electrode Subject to Flexible Substrate

  • Lee, Chan-Jae;Hong, Sung-Jei;Kim, Won-Keun;Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.32-35
    • /
    • 2002
  • In this work, we test electrode material of TFD (Thin Film Diode) device subject to flexible substrate. Al, that is ductile metal, was proper for flexible electrode to fabricate flexible display. The fabricated devices had symmetric electrode structure on both sides of insulation layer. The electrode was made of ductile Al so as to reduce the mismatch of properties between the electrode and substrate. The TFD device was successfully fabricated applying our own etch-free process. Electrical properties were improved by post-annealing.

A Study on Ion Wind Characteristics of Acceleration Type Multipoint Electrode (가속형 다침전극의 이온풍 특성 연구)

  • Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • In this paper, after an acceleration typed ion wind generator which could format strong electric field in air was manufactured and installed, the effects of the electrode configuration and distance of acceleration type ion wind generator with triangle structure on the ion wind generation characteristics were investigated. As a result, the ion wind generator with curvature multipoint electrode could generate higher ion wind velocity and ion wind generation yield than others with multipoint electrode, curvature line electrode, line electrode structure. The ion wind generator with curvature multipoint electrode showed a peak ion wind velocity of 1.33[m/s] at 19.0[kV] and a ion wind generation yield of 0.12[m/Ws] at 15.0[kV].

Brightness Property of ICCP(Inductive Capacitive Coupled Plasma) for External Electrode Fluorescent Lamp (EEFL) (외부전극 형광램프를 위한 유도-용량형 플라즈마의 휘도특성)

  • Lee, Seong-Jin;Choi, Gi-Seung;Chai, Su-Gil;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1657-1658
    • /
    • 2006
  • An external electrode fluorescent lamps (EEFLs) have the advantage of a long lifetime in the early stages of the study on plasma discharge, interest in the lamp continues. Studies on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter. To solve these problems of CCFL, EEFL (External Electrode Fluorescent Lamp) is introduced. Because electrode of EEFL is on the outer surface of discharge tube, the electrode is perfectly prevented from the sputtering by accelerated ions. And it is possible to drive the many CCFLs at the same time, because EEFL shows the positively resistant characteristic. But EEFL has the large non-radiative power loss in sheath. In this study the novel electrode structure was introduced in order to reduce non-radiative power loss in sheath of EEFL. The novel electrode structure comes from the idea to combine conceptually capacitive discharge with inductive discharge. Thus, this study verifies the change in the optical characteristics according to the change in electrode structure through a Maxwell's electromagnetic field simulation and examines the relationship between the change in the EEFL electrode structure and brightness by measuring the optical characteristics.

  • PDF

New Front Plate Structure of ac-PDP using Aluminum Fence-Type Electrode Coated with Anodic Aluminum Oxide

  • Lee, Mi-yeon;Yoon, Sang-Hoon;Kim, Yong-Seog
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.19-22
    • /
    • 2007
  • A new front plate structure of ac-PDP using fence-type aluminum electrode coated with anodic aluminum oxide was investigated. In this structure, ITO and glass dielectric layer were eliminated and expensive Ag BUS electrode was replaced with aluminum. Test panels were prepared using the new structure and their luminance and discharge characteristics were examined. These results indicate that the new structure provide a new way of cost reduction and enhancement of performance of ac-PDPs

New Front Plate Structure of ac-PDP using Aluminum Fence-type Electrode Coated with Anodic Aluminum Oxide

  • Lee, Mi-Yeon;Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.127-130
    • /
    • 2007
  • A new front plate structure of ac-PDP was explored using fence-type aluminum electrode coated with anodic aluminum oxide.[1] In this structure, ITO and glass dielectric layer were eliminated and expensive Ag BUS electrode was replaced with aluminum. Test panels were prepared using the new structure and their luminance and discharge characteristics were examined. These results indicate that the new structure provide a new way of cost reduction and enhancement of performance of ac-PDPs

  • PDF

A Study on the Characteristic of Dye-sensitized Solar Cell by Controlling the Roughness Factor of Counter Electrode (염료감응형 태양전지의 상대전극 Roughness Factor 조절을 통한 셀 특성 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Lee, Kyoung-Jun;Kim, Jeong-Hoon;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.428-430
    • /
    • 2008
  • Dye-sensitized solar cell has many internal resistant components such as Pt counter electrode, $TiO_2$/dye/electrolyte, charge diffusion, sheet resistance of TCO. Among these, the resistance about the counter electrode can be reduced by increasing the roughness factor of Pt counter electrode. This causes the increase of fill factor and improvement of efficiency. And the amount of light reflection on the counter electrode also increases as the roughness factor goes up. In our experiment, we suggest a new deposition structure of Pt thin film that is a stepped-type structure. The more step lines are in the counter electrode, the more roughness factor is. As a result, we get the improvement of fill factor and efficiency by controlling the roughness factor of counter electrode.

  • PDF