• Title/Summary/Keyword: electrochemical interaction

Search Result 123, Processing Time 0.019 seconds

Study on the Output Current for Electrochemical Low-energy Neutrino Detector with Regards to Oxygen Concentration

  • Suda, Shoya;Ishibashi, Kenji;Riyana, Eka Sapta;Aida, Yani Nur;Nakamura, Shohei;Imahayashi, Yoichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.373-377
    • /
    • 2016
  • Background: Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. Materials and Methods: To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. Results and Discussion: It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. Conclusion: We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.

A Newly Synthesized Schiff Base Derived from Condensation Reaction of 2,5-dichloroaniline and benzaldehyde: Its Applicability through Molecular Interaction on Mild Steel as an Acidic Corrosion Inhibitor by Using Electrochemical Techniques

  • Ozkir, Demet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.37-54
    • /
    • 2019
  • A new organic Schiff base compound N-benzylidene-2,5-dichloroaniline (BDC) was synthesized and the structure of the Schiff base is illuminated by some spectroscopic techniques. In addition, whether it is an applicable inhibitor in the industrial field was examined by conventional methods such as linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization for different concentrations. The BDC concentration and temperature effects were surveyed for elucidating the inhibitive mechanism. The BDC molecules are adsorbed to surface of mild steel via the Langmuir isotherm. Atomic force (AFM) and scanning electron microscope (SEM) techniques were utilized to give insight into surface characterization.

The Coordination of Pyridyl-N to Pentacyanoferrate for the Electrochemical Detecting Small Organic Molecules

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.595-599
    • /
    • 2013
  • The coordination of pyridyl-N to pentacyanoferrate for the detection of small organic antigens in solution is presented. The unique contribution of this paper is the direct conjugation of pyridyl-N in small organic antigens to pentacyanoferrate. Pentacyanoferrate is promising as an electrochemical label owing to its good electro-chemical properties, which can be utilized to generate an electrical signal in homogeneous electrochemical immunoassays. The facilely synthesized pyridyl-N to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. Hippuric acid (HA) has been detected competitively on the interaction of free HA and pentacyanoferrate-(4-aminomethylpyridine-hippuric acid) (Fe-HA) to its antibody, with the detection limit of 0.50 ${\mu}g\;mL^{-1}$. While pentacyanoferrate-based immunoassay is in its simplicity and infancy, the proposed immunoassay offers attractive opportunities for developing pyridyl-N-based the electrochemical detection of small organic antigens in the health care area.

Electrochemical Determination of Capsaicin by Ionic Liquid Composite-Modified Electrode

  • Kim, Dong-Hwan;Nam, Sungju;Kim, Jaeyoon;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • An electrochemical detection method for capsaicin has been developed using ionic liquid (IL) doped graphene-titania-Nafion composite-modified electrode. The combination of IL (1-hexyl-3-methylimidazolium with hexafluorophosphate counter ion) in the composite-modified electrode resulted in a significantly increased electrochemical response for capsaicin compared to that obtained at the corresponding electrode without IL. The increased electrochemical signal could be ascribed to the decreased electron transfer resistance through the composite film and also to the effective accumulation of capsaicin on the electrode surface due to ${\pi}-{\pi}$ interaction of the imidazole groups of IL with the aromatic rings of capsaicin. The present IL composite-modified electrode can detect capsaicin with a concentration range from $3.0{\times}10^{-8}M$ to $1.0{\times}10^{-5}M$ with a detection limit of $3.17{\times}10^{-9}M$ (S/N = 3). The present sensor showed good reproducibility (RSD = 3.2%).

Electrochemical and Spectroscopic Studies on the Interaction between DNA and the Product of Enzyme-catalyzed Reaction of OPD-H2O2-HRP

  • Niu, S.Y.;Zhang, S.S.;Ma, L.B.;Jiao, K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.829-832
    • /
    • 2004
  • The pure product of 2,3-diaminophenazine was prepared by the enzyme-catalyzed reaction of ophenylenediamine-$H_2O_2$-horseradish peroxidase and characterized by UV/Vis spectroscopy, IR spectroscopy and NMR spectroscopy. The electrochemical behaviour of 2,3-diaminophenazine on the glassy carbon electrode was studied. The interaction between 2,3-diaminophenazine and deoxyribonucleic acid was studied by cyclic voltammetry method and UV/Vis spectroscopy, which indicated that the interaction between them is intercalation. The influence of reacting time was also studied. The binding ratio of the 2,3-diaminophenazine-DNA complex is calculated to be 1 : 2 and the binding constant is to be $5.07{\times} 10^3L{\cdot}mol^{-1}$ at room temperature.

Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1485-1490
    • /
    • 2012
  • An electrochemical immunoassay based on osmium-hippuric acid (HA) conjugate films onto the electrode is presented for the detection of urinary HA. This is the first report on the use of the oxidative electropolymerization of 5-amino-1,10-phenanthroline (5-$NH_2$-phen) for immobilizing an antigen, osmium-conjugated HA. As a redox mediator, [Os(5-amino-1,10-phenanthroline)$_2$(4-aminomethylpyridine-HA)Cl]$^{+/2+}$ (Os-phen-HA) was successfully synthesized and electropolymerized onto the screen-printed carbon electrodes (SPCEs). The interaction between osmium-HA conjugate films and antibody-HA ($anti$-HA) was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrical signals were linearly proportional to urinary HA in the range of 0.1-5.0 mg/mL, which is sufficient for use as an immunosensor using a cutoff concentration of 2.0 mg/mL in urine samples. The proposed electrochemical immunoassay method can be extended to various applications for detecting a wide range of different small antigens in the health care area.

Assembly of chemically reduced graphene oxide with folic acid functionalized with pyrene moieties and electrochemical sensing of folate receptors

  • Kwon, Binhee;Park, Jongyeap;Jeong, Woojun;Jeong, Guembi;Ryu, Hyeong Seon;Paoprasert, Peerasak;Park, Sung Young;In, Insik
    • Carbon letters
    • /
    • v.27
    • /
    • pp.26-34
    • /
    • 2018
  • To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an ${\pi}-{\pi}$ interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.

Inverse HPLC approach for the evaluation of repulsive interaction between ionic solutes and a membrane polymer

  • Kiso, Yoshiaki;Kamimoto, Yuki;Hosogi, Katsuya;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.127-139
    • /
    • 2015
  • Rejection of ionic solutes by reverse osmosis (RO) and nanofiltration (NF) membranes is controlled mainly by electrochemical interaction as well as pore size, but it is very difficult to directly evaluate such electrochemical interaction. In this work, we used an inverse HPLC method to investigate the interaction between ionic solutes and poly (m- phenylenediaminetrimesoyl) (PPT), a polymer similar to the skin layer of polyamide RO and NF membranes. Silica gel particles coated with PPT were used as the stationary phase, and aqueous solutions of the ionic solutes were used as the mobile phase. Chromatographs obtained for the ionic solutes showed features typical of exclusion chromatographs: the ionic solutes were eluted faster than water (mobile phase), and the exclusion intensity of the ionic solute decreased with increasing solute concentration, asymptotically approaching a minimum value. The charge density of PPT was estimated to be ca. 0.007 mol/L. On the basis of minimum exclusion intensity, the exclusion distances between a salt and neutralized PPT was examined, and the following average values were obtained: 0.49 nm for 1:1 salts, 0.57 nm for 2:1 salts, 0.60 nm for 1:2 salts, and 0.66 nm for 2:2 salts. However, $NaAsO_2$ and $H_3BO_3$, which are dissolved at neutral pH in their undissociated forms, were not excluded.

Fabrication and Characterization of Pyrolyzed Carbon for Use as an Electrode Material in Electrochemical Biosensor (전기화학 바이오센서의 전극물질로 응용을 위한 열분해 탄소의 제작 및 특성 연구)

  • Lee, Jung-A.;Hwang, Seong-Pil;Kwak, Ju-Hyoun;Park, Se-Il;Lee, Seung-Seob;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.986-992
    • /
    • 2007
  • This paper presents the fabrication and characterization of carbon films pyrolyzed with various photoresists for bioMEMS applications. To verify the usefulness of pyrolyzed carbon films as an electrode material in an electrochemical biosensor developed by the authors, interactions between avidin and biotin on the pyrolyzed carbon film were studied via electrochemical impedance spectroscopy based on electrostatic interactions between avidin and negatively-charged ferricyanide. The pyrolyzed carbon films were characterized using a surface profiler, a precision semiconductor parameter analyzer, a nanoindentor, scanning electron microscopy, and atomic force microscopy. Amine conjugated biotin was immobilized on the electrode using EDC/NHS as crosslinkers after $O_2$ plasma treatment to enhance functional groups on the carbon electrode pyrolyzed at $1000^{\circ}C$ with AZ9260. The detection of avidin binding with different concentrations in a range of 0.75 nM to $7.5\;{\mu}M$ to the pyrolyzed carbon electrode modified with biotin was carried out by measuring the electrochemical impedance change. The results show that avidin binds to the biotin on the electrode not by non-specific interaction but by specific interaction, and that EIS successfully detects this binding event. Pyrolyzed carbon films are a promising material for miniaturization, integration, and low-cost fabrication in electrochemical biosensors.

Determination of the Frumkin and Temkin Adsorption Isotherms of Underpotentially Deposited Hydrogen at Pt Group Metal Interfaces Using the Standard Gibbs Energy of Adsorption and Correlation Constants

  • Chun, Jinyoung;Jeon, Sang K.;Chun, Jang H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • At Pt(111), Pt(100), Pt, and Rh interfaces, the Frumkin adsorption isotherm of underpotentially deposited hydrogen (UPD H) and related electrode kinetic data are determined using the standard Gibbs energy of adsorption. The Temkin adsorption isotherm of UPD H correlating with the Frumkin adsorption isotherm of UPD H is readily determined using the correlation constants between the Temkin and Frumkin or Langmuir adsorption isotherms. At the Pt(111), Pt(100), Pt, and Rh interfaces, the lateral repulsive interaction between the UPD H species is interpreted using the interaction parameter for the Frumkin adsorption isotherm. The lateral repulsive interaction between the UPD H species at the Pt(111), Pt(100), Pt, and Rh interfaces is significantly different from the lateral attractive interaction between the overpotentially deposited hydrogen (OPD H) species at Pt, Ir, and Pt-Ir alloy interfaces.