Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.177

Electrochemical Determination of Capsaicin by Ionic Liquid Composite-Modified Electrode  

Kim, Dong-Hwan (Department of Chemistry, Yonsei University)
Nam, Sungju (Department of Chemistry, Yonsei University)
Kim, Jaeyoon (Department of Chemistry, Yonsei University)
Lee, Won-Yong (Department of Chemistry, Yonsei University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 177-184 More about this Journal
Abstract
An electrochemical detection method for capsaicin has been developed using ionic liquid (IL) doped graphene-titania-Nafion composite-modified electrode. The combination of IL (1-hexyl-3-methylimidazolium with hexafluorophosphate counter ion) in the composite-modified electrode resulted in a significantly increased electrochemical response for capsaicin compared to that obtained at the corresponding electrode without IL. The increased electrochemical signal could be ascribed to the decreased electron transfer resistance through the composite film and also to the effective accumulation of capsaicin on the electrode surface due to ${\pi}-{\pi}$ interaction of the imidazole groups of IL with the aromatic rings of capsaicin. The present IL composite-modified electrode can detect capsaicin with a concentration range from $3.0{\times}10^{-8}M$ to $1.0{\times}10^{-5}M$ with a detection limit of $3.17{\times}10^{-9}M$ (S/N = 3). The present sensor showed good reproducibility (RSD = 3.2%).
Keywords
Capsaicin; Graphene; Ionic liquid; Modified electrode; Voltammetry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Perucka, M. Materska, Innov. Food Sci. Emerg. Technol., 2001, 2(3), 189-192.   DOI
2 S. Kosuge, M. Furuta, Agric. Biol. Chem., 1970, 34(2), 248-256.   DOI
3 Z.A.A. Othman, Y.B.H. Ahmed, M.A. Habila, A.A. Ghafar, Molecules, 2011, 16(10), 8919-8929.   DOI
4 M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, Nature, 1997, 389(6653), 816.   DOI
5 E.P. Randviir, J.P. Metters, J. Stainton, C.E. Banks, Analyst, 2013, 138(10), 2970-2981.   DOI
6 C. Rains, H.M. Bryson, Drugs Aging, 1995, 7(4), 317-328.   DOI
7 C. Ganguly, Asian Pacific Journal of Cancer Prevention, 2010, 11(1), 25-8.
8 J.A. Negulesco, R.M. Young, P. Ki, Artery, 1985, 12(5), 301-311.
9 R.K. Kempaiah, H. Manjunatha, K. Srinivasan, Mol. Cell. Biochem., 2005, 275(1-2), 7-13.   DOI
10 T. Kawada, K. Hagihara, K. Iwai, J. Nutr., 1986, 116(7), 1272-1278.   DOI
11 D.E. Henderson, A.M. Slickman, S.K. Henderson, J. Agric. Food Chem., 1999, 47(7), 2563-2570.   DOI
12 A. Rosa, M. Deiana, V. Casu, S. Paccagnini, G. Appendino, M. Ballero, M.A. Dessi, J. Agric. Food Chem., 2002, 50(25), 7396-7401.   DOI
13 W.L. Scoville, J. Pharm. Sci., 1912, 1(5), 453-454.
14 S.H. Choi, B.S. Suh, E. Kozukue, N. Kozukue, C.E. Levin, M. Friedman, J. Agric. Food Chem., 2006, 54(24), 9024-9031.   DOI
15 A. Pena-Alvarez, E. Ramirez-Maya, L.. Alvarado-Suarez, J. Chromatogr. A, 2009, 1216(14), 2843-2847.   DOI
16 Z. A. A. Othman, Y. B. H. Ahmed, M. A. Habila, A. A. Ghafar, Molecules, 2011, 16(10), 8919-8929.   DOI
17 E.K. Johnson, H.C. Thompson, M.C. Bowman, J. Agric. Food Chem., 1982, 30(2), 324-329.   DOI
18 K. Bajaj, G. Kaur, Microchim. Acta, 1979, 71(1-2), 81-86.   DOI
19 H.A.A. Gibbs, L.W. O'Garro, Hortscience, 2004, 39(1), 132-135.   DOI
20 L.H. Liu, X.G. Chen, J.L. Liu, X.X. Deng, W.J. Duan, S.Y. Tan, Food Chem., 2010, 119(3), 1228-1232.   DOI
21 R.T. Kachoosangi, G.G. Wildgoose, R.G. Compton, Analyst, 2008, 133(7), 888-895.   DOI
22 B.M. Quinn, Z.F. Ding, R. Moulton, A.J. Bard, Langmuir, 2002, 18(5), 1734-1742.   DOI
23 T. Mpanza, M.I. Sabela, S.S. Mathenjwa, S. Kanchi, K. Bisetty, Anal. Lett., 2014, 47(17), 2813-2828.   DOI
24 Y. Wang, B.B. Huang, W.L. Dai, J.S. Ye, B. Xu, J. Electroanal. Chem., 2016, 776, 93-100.   DOI
25 A.K. Baytak, M. Aslanoglu, Food Chem., 2017, 228, 152-157.   DOI
26 Y. Wang, B.B. Huang, W.L. Dai, B. Xu, T.L. Wu, J.P. Ye, J.S. Ye, Anal. Sci., 2017, 33(7), 793-799.   DOI
27 D.H. Kim, W.Y. Lee, J. Electroanal. Chem., 2016, 776, 74-81.   DOI
28 M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta, 2006, 51(26), 5567-5580.   DOI
29 W. Sun, P. Qin, R. Zhao, K. Jiao, Talanta, 2010, 80(5), 2177-2181.   DOI
30 T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science, 2003, 300(5628), 2072-2074.   DOI
31 A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi, M.A. Hashim, Electrochim. Acta, 2016, 193, 321-343.   DOI
32 X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochim. Acta, 2012, 80, 346-353.   DOI
33 S. Hu, Y.H. Wang, X.Z. Wang, L. Xu, J. Xiang, W. Sun, Sens. Actuators B Chem., 2012, 168, 27-33.   DOI
34 C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron, 2010, 25(6), 1504-1508.   DOI
35 Q. Zhang, S. Wu, L. Zhang, J. Lu, F. Verproot, Y. Liu, Z. Xing, J. Li, X.M. Song, Biosens. Bioelectron, 2011, 26(5), 2632-2637.   DOI
36 J. Jang, D.H. Kim, W.Y. Lee, Anal. Lett., 2016, 49(13), 2018-2030.   DOI
37 J. Fan, H. Guo, G. Liu, P. Peng, Anal. Chim. Acta 2007, 585(1), 134-138.   DOI
38 Y. Yardim, Electroanalysis, 2011, 23(10), 2491-2497.   DOI
39 C.Y. Lin, F.Y. Shen, G.W. Lian, K.L. Chien, F.C. Sung, P.C. Chen, T.C. Su, Atherosclerosis, 2015, 241(2), 657-663.   DOI
40 W. Zhang, T. Yang, X. Zhuang, Z. Guo, K. Jiao, Biosens. Bioelectron. 2009, 24(8), 2417-2422.   DOI