• Title/Summary/Keyword: electrochemical biosensor

Search Result 129, Processing Time 0.026 seconds

Hydrogen Peroxide Sensitive Biosensors Based on Mugwort-Peroxidase Entrapped in Carbon Pastes (탄소반죽에 쑥 과산화효소를 고정한 과산화수소 감응 바이오센서)

  • Yoon, Kil Joong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.624-629
    • /
    • 2015
  • A biosensor including the homogenized tissue of mugwort embedded in carbon paste, which senses hydrogen peroxide, was constructed and its electrochemical properties were validated using voltammetry. The good linearity of Hanes-Woolf plot implied that the reduction reaction of substrate was catalyzed by mugwort peroxidase at the electrode surface. Also the small value of symmetry factor, 0.28, indicated that electrochemical kinetics of the sensor is very sensitive to the change of electrode potential. Many experimental results collected above proved that the dissociation of hydrogen peroxide is dependent on the catalytic power of mugwort peroxidase qualitatively and quantitatively at the surface of the mugwort electrode. It is our firm belief that the marketed HRP can be replaced with mugwort tissue.

Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

  • Kim, Seul-Ki;Bae, Si-Ra;Ahmed, Mohammad Shamsuddin;You, Jung-Min;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1215-1220
    • /
    • 2011
  • An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of $1.0{\times}10^{-7}$ to $1.0{\times}10^{-5}$ M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA.

Development Trend of Biosensors for Antimicrobial Drugs in Water Environment (물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향)

  • Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2016
  • While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.

Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold (금 처리를 통한 PEDOT 마이크로튜브 전극의 과산화수소 검출 특성 향상)

  • Park, Jongseo;Son, Yongkeun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.809-814
    • /
    • 2014
  • An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for $H_2O_2$ detection and showed very sluggish electrochemical response to $H_2O_2$. To enhance the detection efficiency to the oxidation of $H_2O_2$, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to $H_2O_2$. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of $H_2O_2$.

Electrical Recognition of Label-Free Oligonucleotides upon Streptavidin-Modified Electrode Surfaces

  • Park, Jong-Wan;Jung, Ho-Sub;Lee, Hea-Yeon;Kawai, Tomoji
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.505-509
    • /
    • 2005
  • For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.

Electropolymerization of Pyrrole Applied to Biosystem

  • Lee, Chi-Woo;Yoon, Jung-Hyun;Cho, Hyun-Woo;Bae, Sang-Eun;Lee, Kang-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • We have been investigating electropolymerization of pyrrole in aqueous electrolyte solutions in acidic as well as in neutral conditions by in situ electrochemical quartz crystal oscillator method, where resonant frequency and resonant resistance can be monitored simultaneously with current-voltage measurements during electropolymerization of pyrrole. The properties of thin PPy films prepared on electrode surfaces depended strongly on the experimental variables of electrode potentials applied, solution pH, kinds and quantity of supporting electrolytes, added chemicals, and the mode of electrochemical method employed. We are applying our experience gained on electropolymerization of pyrrole to immobilizing biomolecules onto electrode surfaces to develop a biosensor system. In this work, we wish to present the results on electrochemical monitoring on electropolymerization of pyrrole in the presence of DNA and albumin in different electrochemical conditions. Additionally we will summarize our investigations on the miniaturization of biomolecules/PPy composites by means of scanning tunneling microscopy.

Direct electrochemistry of hemoglobin at carbon electrode modified with lipid film and its application as a $H_{2}O_{2}$ sensor (Lipid Film에 수식된 헤모글로빈의 전기화학적 특성과 $H_{2}O_{2}$응답특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Choi, Yong-Sung;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.93-94
    • /
    • 2006
  • In this research, the enhancement of electron-transfer activity of hemoglobin (Hb) in dodecanoic acid film was investigated for the first time. This type of composite film was made on glassy carbon electrode by casting method. Cyclic voltammetric result of the modified electrode displays a well defined redox peaks which was attributed to the direct electrochemical response of Rb. Our results illustrate that Rb exchange electrons directly with electrode and exhibits the characteristics of peroxidase. When we apply this modified electrode as a biosensor, it gives excellent performances in the electrocatalytic reduction of hydrogen peroxide ($H_{2}O_{2}$). Through the optimal conditions, the proposed biosensor shows the linear range for H2O2 determination was from $1{\times}10^{-5}$ to $1.25{\times}10^{-4}mol/L$ with a detection limit of $1{\times}10^{-7}mol/L$. The biosensor retained more than 90% of the initial response after 14 days.

  • PDF

Diagnosis of Trace Toxic Uranium Ions in Organic Liver Cell

  • Ly, Suw Young;Pack, Eun Chul;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.117-120
    • /
    • 2014
  • Uranium is toxic and radioactive traces of it can be found in natural water and soils. High concentrations of it in biological systems cause genetic disorders and diseases. For the in vivo diagnosis, micro and nano range detection limits are required. Here, an electrochemical assay for trace toxic uranium was searched using stripping voltammetry. Renewable and simplified graphite pencils electrode (PE) was used in a three-electrode cell system. Seawater was used instead of an electrolyte solution. This setup can yield good results and the detection limit was attained to be at $10{\mu}gL^{-1}$. The developed skill can be applied to organic liver cell.

A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-Reducing Bacterium, Shewanella putrefaciens

  • KIM, HYUNG JOO;MOON SIK HYUN;IN SEOP CHANG;BYUNG HONG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.365-367
    • /
    • 1999
  • A fuel cell type biosensor for lactate was developed using a metal-reducing bacterium, Shewanella putrefaciens IR-1. Under the operational conditions, the bacterial cell suspension generated the current without an electrochemical mediator in the presence of lactate. The current was proportional to the lactate concentration up to 30 mM.

  • PDF

A Dipstick-Type Electrochemical Immunosensor for The Detection of The Organophosphorus Insecticide Fenthion

  • Cho, Young-Ae;Cha, Geun-Sig;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.743-746
    • /
    • 2005
  • A dipstick-type immunochemical biosensor for the detection of the organophosphorus insecticide fenthion was developed using a screen-printed electrode system as an amperometric transducer with polyclonal antibodies against fenthion as a bioreceptor. The assay of the biosensor involved competition between the pesticide in the sample and pesticide-glucose oxidase conjugate for binding to the antibody immobilized on the membrane. This was followed by measurement of the activity of the bound enzyme by the supply of the enzyme substrate (glucose) and amperometric determination of the enzyme reaction product ($H_2O_2$). The activity of the bound enzyme was inversely proportional to the concentration of pesticide. The optimized sensor system showed a linear response against the logarithm of the pesticide concentration ranging from $10^{-2}$ to $10^3\;{\mu}g/L$.