DOI QR코드

DOI QR Code

Hydrogen Peroxide Sensitive Biosensors Based on Mugwort-Peroxidase Entrapped in Carbon Pastes

탄소반죽에 쑥 과산화효소를 고정한 과산화수소 감응 바이오센서

  • Received : 2015.07.03
  • Accepted : 2015.08.15
  • Published : 2015.10.10

Abstract

A biosensor including the homogenized tissue of mugwort embedded in carbon paste, which senses hydrogen peroxide, was constructed and its electrochemical properties were validated using voltammetry. The good linearity of Hanes-Woolf plot implied that the reduction reaction of substrate was catalyzed by mugwort peroxidase at the electrode surface. Also the small value of symmetry factor, 0.28, indicated that electrochemical kinetics of the sensor is very sensitive to the change of electrode potential. Many experimental results collected above proved that the dissociation of hydrogen peroxide is dependent on the catalytic power of mugwort peroxidase qualitatively and quantitatively at the surface of the mugwort electrode. It is our firm belief that the marketed HRP can be replaced with mugwort tissue.

호모게나이저로 파쇄한 쑥 조직을 탄소반죽에 혼입시켜 과산화수소 감응 바이오센서를 제작하고 그것의 전기화학적 특성을 전압전류법으로 살펴보았다. Hanes-Woolf 도시의 좋은 직선성은 기질분해가 쑥 과산화효소에 의하여 촉매화되고 있음을 보여 주었으며, 작은 값의 대칭인자(${\alpha}$, 0.28)는 전극전위의 변화가 반응속도변화에 미치는 영향이 대단히 민감한 것을 말하여 주었다. 이런 실험적 사실들은 과산화수소의 분해가 쑥전극 표면에 있는 과산화효소의 촉매력에 의하여 정성적, 정량적으로 분해되고 있음을 보여 주는 것으로 서양 고추냉이로부터 추출된 고가의 시판 과산화효소를 쑥 조직으로 대치할 수 있음을 확신하게 하는 것이다.

Keywords

References

  1. E. Casero, M. Darder, F. Pariente, and E. Lorenzo, Peroxidase enzyme electrodes as nitric oxide biosensors, Anal. Chim. Acta, 403, 1-9 (2000). https://doi.org/10.1016/S0003-2670(99)00555-3
  2. B. Wang, J. Zhang, and S. Dong, Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, Biosensors & Bioelectronics, 15, 397-402 (2000). https://doi.org/10.1016/S0956-5663(00)00096-8
  3. S. Cosnier, S. Szunerits, R. S. Marks, A. Novoa, L. Puech, E. Perez, and I. Rico-Lattes, A rapid and easy procedure of biosensor fabrication by micro-encapsulation of enzyme in hydrophilic synthetic latex film. Application to the amperometric determination of glucose, Electrochem. Comm., 2, 851-855 (2000). https://doi.org/10.1016/S1388-2481(00)00135-1
  4. H. Olschewski, A. Erlenkotter, C. Zaborosch, and G. C. Chemnitius, Screen-printed enzyme sensors for L-lysine determination, Enzyme Microb. Technol., 26, 537-543 (2000). https://doi.org/10.1016/S0141-0229(99)00192-1
  5. Y. Miao and S. N. Tan, Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix, Anal. Chim. Acta, 437, 87-93 (2001). https://doi.org/10.1016/S0003-2670(01)00986-2
  6. Y. H. Yang, M. H. Yang, H. Wang, L. Tang, G. L. Shen, and R. Q. Yu, Inhibition biosensor for determination of nicotine, Anal. Chim. Acta, 509, 151-157 (2004). https://doi.org/10.1016/j.aca.2003.12.028
  7. H. S. Kwon, I. K. Park, K. J. Yoon, and M. L. Seo, Plant issue-based amperometric sensor for determination of phenols in methylene chloride, J. Kor. Chem. Soc., 44, 376-379 (2000).
  8. M. S. Lin, S. Y. Tham, and G. A. Rechnitz, Pineapple-tissue based biosensor for the determination of hydrogen peroxide, Electroanalysis, 2, 511-516 (1990). https://doi.org/10.1002/elan.1140020703
  9. J. Wang, X. J. Zhang, and M. Prakash, Glucose biosensor based on carbon paste enzyme electrodes modified with cupric hexacyanoferrate, Anal. Chim. Acta, 395, 11-16 (1999). https://doi.org/10.1016/S0003-2670(99)00306-2
  10. H. S. Dho and K. J. Yoon, Electrochemical kinetic study of amperometric hydrogen peroxide biosensor fabricated using SBS, J. Ind. & Eng. Chem., 17, 254-258 (2011). https://doi.org/10.1016/j.jiec.2011.02.016
  11. K. J. Yoon, K. J. Kim, and H. S. Kwon, Electrochemical properties of the chicken small intestinal tissue based enzyme electrode for the determination of hydrogen peroxide, J. Kor. Chem. Soc., 43, 271-279 (1999).
  12. B. G. Lee, K. B. Rhyu, and K. J. Yoon, Amperometric study of hydrogen peroxide biosensor with butadiene rubber as immobilization matrix, J. Ind. & Eng. Chem., 16, 340-343 (2010). https://doi.org/10.1016/j.jiec.2010.01.016
  13. B. Tang and Y. Wang, Spectrofluorimetric determination of both hydrogen peroxide and -O-O-H in polyethylene glycols (PEGs) using 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNT) as substrate for horseradish peroxidase (HRP), Spectrochim. Acta A, 59, 2867-2874 (2003). https://doi.org/10.1016/S1386-1425(03)00107-0
  14. S. Gaspar, I. C. Popescu, I. G. Gazaryan, A. G. Bautista, I. Y. Sakharov, B. Mattisson, and E. Csoregi, Biosensors based on novel plant peroxidase: a comparative study, Electrochim. Acta, 46, 255-264 (2000). https://doi.org/10.1016/S0013-4686(00)00580-6
  15. K. J. Yoon, Electrochemical properties of HRP immobilized biosensor bound with EPDM, Elastomer, 42, 112-118 (2007).
  16. K. J. Yoon, Optimum pH of the reduction of hydrogen peroxide at a tobacco plant tissue based amperometric biosensor, J. Kor. Chem. Soc., 48, 654-658 (2004). https://doi.org/10.5012/jkcs.2004.48.6.654
  17. H. S. Kwon, E. H. Jin, K. J. Yoon, and Y. N. Pak, Mushroom-juice based gold electrode for the determination of phenols, J. Kor. Chem. Soc., 49, 224-228 (2005). https://doi.org/10.5012/jkcs.2005.49.2.224
  18. B. G. Lee, S. W. Park, and K. J. Yoon, Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide, Anal. Sci. & Tech., 19, 58-64 (2006).
  19. H. S. Kwon, H. J. Kim, K. J. Yoon, and Y. N. Pak, Chard root-tissue based biosensor for the determination of dopamine, J. Kor. Chem. Soc., 51, 291-297 (2007). https://doi.org/10.5012/jkcs.2007.51.3.291
  20. K. B. Rhyu and K. J. Yoon, Amperometric kineics of hydrogen peroxide biosensor bound with natural rubber, Appl. Chem. Eng., 21, 689-693 (2010).
  21. K. J. Yoon, S. Y. Pyun, and H. S. Kwon, Chicken liver tissus-based amperometric biosensor for the determination of hydrogen peroxide, J. Kor. Chem. Soc., 41, 343-350 (1997).
  22. K. J. Yoon, Electrochemical investigation of animal tissue embedded biosensor bound with ethylene-propylene rubber, Bull. Kor. Chem. Soc., 31, 2913-2917 (2010). https://doi.org/10.5012/bkcs.2010.31.10.2913
  23. K. B. Rhyu and K. J. Yoon, Electrochemical kinetic analysis of the carbon paste enzyme electrode bound with rubber, Anal. Sci. Tech., 24, 113-118 (2011). https://doi.org/10.5806/AST.2011.24.2.113
  24. J. A. Brydson, Rubbery materials and their compounds, p. 291, Elsevier Applied Science, London and New York (1998).
  25. A. Mansouri, D. P. Makris, and P. Keflas, Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxalate chemiluminescence-based assay, J. Pham. Biomed. Anal, 39, 22-26 (2005). https://doi.org/10.1016/j.jpba.2005.03.044
  26. B. G. Lee, K. B. Rhyu, and K. J. Yoon, A rapid and easy fabrication of plant-tissue biosensor using rubber binder and its practicability test, Anal. Sci. & Tech., 22, 355-359 (2009).
  27. K. B. Rhyu and K. J. Yoon, A new amperometric carbon paste biosensor bound with chlorosulphonated polyethylene, J. Kor. Chem. Soc., 55, 323-327 (2011). https://doi.org/10.5012/jkcs.2011.55.2.323
  28. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial electrochemistry, pp. 3-13, Addison-Wesley Publishing company, Inc. U. S. A. (1975).
  29. A. J. Bard and L. R. Faulkner, Electrochemical Methodes, pp. 176-182, John Wiley & Sons, Inc., Canada (1980).

Cited by

  1. 과산화수소 정량을 위한 서양고추냉이 과산화효소 대용 아카시아의 활용 vol.28, pp.3, 2015, https://doi.org/10.14478/ace.2017.1033