Browse > Article

Electrical Recognition of Label-Free Oligonucleotides upon Streptavidin-Modified Electrode Surfaces  

Park, Jong-Wan (The Institute of Scientific and Industrial Research, Osaka University)
Jung, Ho-Sub (The Institute of Scientific and Industrial Research, Osaka University)
Lee, Hea-Yeon (The Institute of Scientific and Industrial Research, Osaka University)
Kawai, Tomoji (The Institute of Scientific and Industrial Research, Osaka University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.6, 2005 , pp. 505-509 More about this Journal
Abstract
For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.
Keywords
direct electrochemical detection; label-free DNA; step-by-step procedure; streptavidin-biotin system;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Yu, C. J., Y. Wan, H. Yowanto, J. Li, C. Tao, M. D. James, C. L. Tan, G. F. Blackburn, and T. J. Meade (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J. Am. Chem. Soc. 123: 11155-11161   DOI   ScienceOn
2 Zhang, L. and X. Lin (2005) Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid, Anal. Bioanal. Chem. 382: 1669- 1677   DOI   ScienceOn
3 Ebersole, R. C., J. A. Miller, J. R. Moran, and M. D. Ward (1990) Spontaneously formed functionally active avidin monolayers on metal surfaces: a strategy for immobilizing biological reagents and design of piezoelectric biosensors. J. Am. Chem. Soc. 112: 3239-3241   DOI
4 Johnston, D. H., K. C. Glasgow, and H. H. Thorp (1995) Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J. Am. Chem. Soc. 117: 8933-8938   DOI   ScienceOn
5 Lee, H. Y., J. W. Park, H. S. Jung, J. M. Kim, and T. Kawai (2004) Electrochemical assay of nonlabeled DNA chip and SNOM imaging by using streptavidin-biotin interaction. J. Nanosci. Nanotechnol. 4: 882-885   DOI   ScienceOn
6 Kim, J. M., H. S. Jung, J. W. Park, H. Y. Lee, and T. Kawai (2004) AFM phase lag mapping for protein-DNA oligonucleotide complexes. Anal. Chim. Acta 525: 151- 157   DOI   ScienceOn
7 Kelley, S. O., J. K. Barton, N. M. Jackson, and M. G. Hill (1997) Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate Chem. 8: 31-37   DOI   ScienceOn
8 Sosnowski, R. G., E. Tu, W. F. Butler, J. P. O'Connell, and M. J. Heller (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. 94: 1119-1123
9 Simokawa, N., A. Hirano, and M. Sugawara (2001) An ion-channel sensor for abasic sites in DNA. Anal. Sci. 17: 1379-1382   DOI   ScienceOn
10 Drummond, T. G., M. G. Hill, and J. K Barton (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21: 1192- 1199   DOI   ScienceOn
11 Lee, H. Y., J. W. Park, and T. Kawai (2004) SNPs feasibility of nonlabeled oligonucletides onby using electrochemical sensing. Electroanalysis 16: 1999-2002   DOI   ScienceOn
12 Yang, M., M. E. McGovern, and M. Thompson (1997) Genosensor technology and the detection of interfacial nucleic acid chemistry. Anal. Chim. Acta 346: 259-275
13 Wang, J., G. Rivas, J. R. Fernandes, J. L. L. Paz, M. Jiang, and R. Waymire (1998) Indicator-free electrochemical DNA hybridization biosensor. Anal. Chim. Acta 375: 197- 203   DOI   ScienceOn
14 Napier, M. E., C. R. Loomis, M. F. Sistare, J. Kim, A. E. Eckhardt, and H. H. Thorp (1997) Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization. Bioconjugate Chem. 8: 906-913   DOI   ScienceOn
15 Park, J. W., H. Y. Lee, J. M. Kim, R. Yamasaki, T. Kanno, H. Tanaka, H. Tanaka, and T. Kawai (2004) Electrochemical detection of nonlabeled oligonucleotide DNA using the biotin-modified DNA(ss) on streptavidin-modified gold electrode. J. Biosci. Bioeng. 97: 29-32   DOI
16 Kim, J. M., R. Yamasaki, J. W. Park, H. S. Jung, H. Y. Lee, and T. Kawai (2004) Stable high ordered protein layers confirmed by atomic force microscopy and quartz crystal microbalance. J. Biosci. Bioeng. 97: 140-142