Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.809

Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold  

Park, Jongseo (Research Division of Restoration Technology, National Research Institute of Cultural Heritage)
Son, Yongkeun (Department of Chemistry, BK21 plus School of HRD Center for Creative Convergence Chemical Science, Sungkyunkwan University)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 809-814 More about this Journal
Abstract
An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for $H_2O_2$ detection and showed very sluggish electrochemical response to $H_2O_2$. To enhance the detection efficiency to the oxidation of $H_2O_2$, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to $H_2O_2$. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of $H_2O_2$.
Keywords
conducting polymer; EDOT; microtubule; gold treatment; hydrogen peroxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Cai and C. R. Martin, J. Am. Chem. Soc., 111, 4138 (1989).   DOI   ScienceOn
2 K. Sukchol, S. Thongyai, P. Praserthdam, and G. A. Sotzing, Synth. Met., 179, 10 (2013).   DOI
3 L. Xia, Z. Wei, and M. Wan, J. Colloid Interf. Sci., 341, 1 (2011).
4 Rajesh, T. Ahuja, and D. Kumar, Sensor Actuat. B- Chem., 136, 275 (2009).   DOI
5 M. Atobe, N. Yoshida, K. Sakamoto, K. Sugino, and T. Fuchigami, Electrochim. Acta, 87, 409 (2013).   DOI
6 U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, Anal. Chim. Acta, 614, 1 (2008).   DOI   ScienceOn
7 R. V. Parthasarathy and C. R. Martin, Nature, 369, 298 (1994).   DOI   ScienceOn
8 A. Kros, S. W. F. M. Van Hövell, N. A. J. M. Sommerdijk, and R. J. M. Nolte, Adv. Mater., 13, 1555 (2001).   DOI   ScienceOn
9 Y. Nakabayashi and H. Yoshikawa, Anal. Sci., 16, 609 (2000).   DOI
10 J. Wang, J. Pharmaceut. Biomed. Anal., 19, 47 (1999).   DOI
11 M. Mathew and N. Sandhyarani, Biosens. Bioelectron., 28, 210 (2011).   DOI
12 C. X. Guo and C. M. Li, Phys. Chem. Chem. Phys., 12, 12153 (2010).   DOI
13 J. Park, J. Kim, and Y. Son, Synth. Met., 156, 714 (2006).   DOI
14 H. Zhou, H. Chen, S. Luo, J. Chen, W. Wei, and Y. Kuang, Biosens. Bioelectron., 20, 1305 (2005).   DOI   ScienceOn
15 B. Kim, M. S. Cho, Y. S. Kim, Y. Son, and Y. Lee, Synth. Met., 153, 149 (2005).   DOI
16 A. Balamurugan, K.-C. Ho, S.-M. Chen, and T.-Y. Huang, Colloid Surface A, 362, 1 (2010).   DOI
17 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2000.
18 N. F. Atta, A. Galal, and F. Khalifa, Appl. Surf. Sci., 253, 4273 (2007).   DOI
19 L. M. Moretto, P. Ugo, M. Zanata, P. Guerriero, and C. R. Martin, Anal. Chem., 70, 2163 (1998).   DOI   ScienceOn