• Title/Summary/Keyword: eigenvalue technique

Search Result 147, Processing Time 0.03 seconds

Stabilizing Controller Design for Linear Time-Varying Systems Using Ackerman-like Formula

  • Choi, Jae-Weon;Lee, Ho-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.1-125
    • /
    • 2001
  • This paper deals with the eigenvalue assignment technique for linear time-varying systems to achieve feedback stabilization. For this, we introduce the novel eigenvalue concepts. Then, we propose the Ackerman-like formula for linear time-varying systems. It is believed that this technique is the generalized version of the Ackerman formula forlinear time-invariant systems. The advantages of the proposed technique are that it does not require the transformation of the original system into the phase-variable form nor the computation of eigenvalues of the original system.

  • PDF

A Solute Transport Analysis around Underground Storage Cavern by using Eigenvalue Numerical Technique (고유치 수치기법을 이용한 지하저장공동 주위의 용질이동해석)

  • Chung, Il-Moon;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.381-391
    • /
    • 2008
  • The eigenvalue technique is introduced to overcome the problem of truncation errors caused by temporal discretization of numerical analysis. The eigenvalue technique is different from simulation in that only the space is discretized. The spatially discretized equation is diagonized and the linear dynamic system is then decoupled. The time integration can be done independently and continuously for any nodal point at any time. The results of eigenvalue technique are compared with the exact solution and FEM numerical solution. The eigenvalue technique is more efficient than the FEM to the computation time and the computer storage in the same conditions. This technique is applied to the solute transport analysis in nonuniform flow fields around underground storage caverns. This method can be very useful for time consuming simulations. So, a sensitivity analysis is carried out by using this method to analyze the safety of caverns from nearly located contaminant sources. According to the simulations, the reaching time from source to the nearest cavern may takes 50 years with longitudinal dispersivity of 50 m and transversal dispersivity of 5 m, respectively.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

Solution of Eigenvalue Problems for Nonclassically Damped Systems with Multiple Frequencies (중복근을 갖는 비비례 감쇠시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.205-216
    • /
    • 1998
  • A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of nonclassicary damped structural systems with multiple eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linear eigenproblem through matrix augmentation of the quadratic eigenvalue problem. In the iteration methods such as the inverse iteration method and the subspace iteration method, singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of the system. However, even though the shift value is an eigenvalue of the system, the proposed method provides nonsingularity, and that is analytically proved. Since the modified Newton-Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos method effectively produces better initial values than other methods, the results of the Lanczos method are taken as the initial values of the proposed method. Two numerical examples are presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF

A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

  • Yee, Ben C.;Kochunas, Brendan;Larsen, Edward W.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1125-1134
    • /
    • 2017
  • In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

A Method for Checking Missed Eigenvalues in Eigenvalue Analysis with Damping Matrix

  • Jung, Hyung-Jo;Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • In the case of the non-proportionally damped system such as the soil-structure interaction system, the structural control system and composite structures, the eigenproblem with the damping matrix should be necessarily performed to obtain the exact dynamic response. However, most of the eigenvalue analysis methods such as the subspace iteration method and the Lanczos method may miss some eigenvalues in the required ones. Therefore, the eigenvalue analysis method must include a technique to check the missed eigenvalues to become the practical tools. In the case of the undamped or proportionally damped system the missed eigenvalues can easily be checked by using the well-known Sturm sequence property, while in the case of the non-proportionally damped system a checking technique has not been developed yet. In this paper, a technique of checking the missed eigenvalues for the eigenproblem with the damping matrix is proposed by applying the argument principle. To verify the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Antenna array for estimation of direction of arrival utilizing modified minimum eigenvalue searching (개선된 MES 방법을 이용한 신호의 도래각(DOA) 추정을 위한 배열안테나)

  • 이현배;최승원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.164-173
    • /
    • 1996
  • This paper presents an alternative technique for DOA (direction-of-arrival) estimation. For generating a weight vector orthogonal to the signal subspace, a modified version of MES (minimum eigenvalue searching ) method is introduced. The performance of the proposed technique is compared to that of the conventional ED (eigen decomposition) method in terms of angle resolution for a number of snapshots during agiven observation period as well as various SNR's. In addition, the superiority of the suggested technique is shown, by analyzing the required computational load of the proposed MES and conventional ED method. A novel procedure of simplifying the MES proposed in [1] is presented on that purpose. Another advnatage of the proposed technique is that it is performed independently of the detection of the number of signal components, which makes it possible to estimate the DOA's of clusters consisting of infinite number of inseparable signal components.

  • PDF

Design of Optimal Controllers for Spacecraft Formation Flying Based on the Decentralized Approach

  • Bae, Jong-Hee;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • Formation controller for multiple spacecrafts is designed based on a decentralized approach. The objective of the proposed controller is to make each spacecraft fly to the desired waypoints, while keeping the formation shape of multiple spacecrafts. To design the decentralized formation controller, the output feedback linearization technique using error functions for goal convergence and formation keeping is utilized for spacecraft dynamics. The primary contribution of this paper is to proposed optimal controller for formation flying based on the decentralized approach. To design the optimal controller, eigenvalue assignment technique is used. To verify the effectiveness of the proposed controller, numerical simulations are performed for three-dimensional waypoint-passing missions of multiple spacecrafts.

A PARALLEL PRECONDITIONER FOR GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHOD

  • MA, SANGBACK;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • In this study, we shall be concerned with computing in parallel a few of the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue problem, $Ax={\lambda}Bx$, where A is symmetric, and B is symmetric positive definite. Both A and B are large and sparse. Recently iterative algorithms based on the optimization of the Rayleigh quotient have been developed, and CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for small extreme eigenvalues. As in the case of a system of linear equations, successful application of the CG scheme to eigenproblems depends also upon the preconditioning techniques. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. The idea underlying the present work is a parallel computation of the Multi-Color Block SSOR preconditioning for the CG optimization of the Rayleigh quotient together with deflation techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n, where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message Passing Interface) library was adopted for the interprocessor communications. The test problems were drawn from the discretizations of partial differential equations by finite difference methods.

  • PDF

PERTURBATION ANALYSIS OF DEFLATION TECHNIQUE FOR SYMMETRIC EIGENVALUE PROBLEM

  • JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2001
  • The evaluation of a few of the smallest eigenpairs of large symmetric eigenvalue problem is of great interest in many physical and engineering applications. A deflation-preconditioned conjugate gradient(PCG) scheme for a such problem has been shown to be very efficient. In the present paper we provide the numerical stability of a deflation-PCG with partial shifts.

  • PDF