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Solution of Eigenvalue Problems for Nonclassically Damped
Systems with Multiple Frequencies
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Abstract

A solution method is presented to solve the eigenvalue problem arising in the dynamic analysis of
nonclassically damped structural systems with multiple eigenvalues. The proposed method is obtained
by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenve-
ctors to the linear eigenproblem through matrix augmentation of the guadratic eigenvalue problem.
In the iteration methods such as the inverse iteration method and the subspace ileration method,
singularity may be occurred during the factorizing process when the shift value is close to an eigen-
value of the system. However, even though the shift value is an eigenvalue of the system, the pro-
posed method provides nonsingularity, and that is analytically proved. Since the modified Newton-
Raphson technique is adopted to the proposed method, initial values are need. Because the Lanczos
method effeciively produces better initial values than other methods, the results of the Lanczos
method are taken as the initial values of “the proposed method. Two numerical examples are prese-
nted to demonstrate the effectiveness of the proposed method and the results are compared with
those of the well-known subspace iteration method and the Lanczos method.

Keywords : eigenanalysis, nonclassically damped system, modified Newton-raphson technigque
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1. Introduction

In the analysis of dynamic response of
structural systems, the equation of motion of
a damped system can be expressed as

Mu@®) +Cu) +Ku@)=F() (1

where M, K and C are the n by n mass,
stiffness and nonproportional damping matri
cesV, respectively, and u(t), u(f) and u(t)
are the n by 1 acceleration, velocity and dis-
placement vectors, respectively. To find the
free vibration solution of the system, we first
solve Eq. (1) for the homogeneous solution,
which is of the form

u(t) =ge” (2)

Substituting Eq. (2) into Eq. (1), it yields
the quadratic eigenproblem such as

AM¢p+ACp+ Kd=0 (3

in which A and ¢ are the eigenvélue and ei-
genvector of the system. There are 2n eige-
nvalues for the system with n degrees of
freedom and these occur either in real pairs
or in complex conjugate pairs, depending
upon whether they correspond to overdamped
or underdamped modes.

The common practice is to reformulate the
quadratic system of equation to a linear one
by doubling the order of the system such as

—-K 0 ¢ C My ¢
AP e o VA I
0 M \Ad M 0]\Ad
which may be rewritten as
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AV =) AB¥ (5)
with
A=[_(‘;{A2],B=-[(jwﬁg and
_[¢
-

Transformation methods such as QR?, LZ®
or Jacobi¥ determine all the eigenvalues and
the associated eigenvectors in an arbitrary
sequence. This is not very efficient in situa-
tions where only the lowest frequencies are
of interest and there is a large number of
degrees of freedom. Also transformation
methods by their nature modify the initial
matrices during the solution process and can
not take full advantage of the sparseness of
these matrices.

Perturbation method®=® is used for the ei-
genvalue problem of lightly damped systems.
Since weak damping implies that the eige-
nsolution of the damped system will differ
only slightly from that of the corresponding
undamped system, it is to set the eigensolu-
tion of the undamped system as the zero
order approximation of that of the damped
system and let the higher order terms ac-
count for the slightly damping effect.The
classical inverse iteration method'®™'® is
commonly used to solve for only a small
number of desired modes. However, the
method requires a great deal of complex ari-
thmetic operations for each eigenvalue
sought. The subspace iteration method'® ¥ is
a more efficient alternative than the inverse
iteration method. It yields all modes requested
simultaneously and does not have the draw-
back that the higher modes are less accurate



than the lower modes because it avoids the
round-off errors of the inverse iteration
method due to the deflation process. Howev-
er, as in the inverse iteration method, a
large number of complex arithmetic manipu-
lations are required in the iteration process
for general structural systems. Furthermore,
when the shift value becomes close to an ei-
genvalue of the system, singularity may be
encountered during triangularization process.

In recent years there has been considerable
interest in the Lanczos algorithm and its ap-
plications. The Lanczos algorithmm for the
computation of eigenvalues and eigenvectors
of a real symmetric matrix was presented in
reference 15 and improved in references 16
~20. The Lanczos algorithm to solve the ei-
genvalue problem of nonclassically damped
system is dealt with in references 21~26.
Two sided-Lanczos algorithm® =% requires
the generation of two sets of Lanczos vec-
tors, left and right, and the symmetric La-
nczos algorithm® *® uses a set of Lanczos
vectors to reduce a large eigenvalue problem
in a much smaller one. Although only real
arithmetic is solved during the Lanczos re-
cursive process, in contrast to the case of
real symmetric eigenproblems, there will be a
possibility of serious breakdown and the ac-
curacy of the solutions obtained is low™.

Although the authors presented the solution
method for an eigenvalue problem with dis-
tinet eigenvalues®™, the method has demerit
that singularity is occurred if the eigenvalue
desired is multiple. Therefore, in the present
paper we develop the method to solve an ei-
genproblern with guaranteed nonsingularity
for a damped structural system with multiple
eigenvalues as well as distinct ones.

In the second section, the basic concept of
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the proposed method, which applies the modi-
fied Newton-Raphson technique to a linear
eigenproblem, and the analytical proof of its
nonsingularity are presented. In the third
section, two numerical examples are prese-
nted to identify the efficiency of the pro-
posed method and the results of the proposed
method are compared with those of the well~
known subspace iteration method® and the
Lanczos method™.

2. Method of analysis

2.1 Problem Definition

In this paper, we consider an eigenproblem
of which the eigenvalue A has multiplicity. m.
For simplicity let us assume that the first ei-
genvalues are equal

A=A=d=- =A (7)
Then Eq. (5) can be presented in matrix
form for the m multiple eigenvalues as fol-
lows

AU =BT A (8)
where A =diag(h, -+*, A) = AL, and ¥= [T
y, -+, Walis, a n by m matrix satisfying the

orthonormal condition with respect to matrix
B such as

YTBY =1I. (9)

where I, is an unitary matrix of order m.
The obkctive is to develop an efficient so-

. lution method with guaranteed nonsingularity

for an eigenproblem described by Egs (8)
and (9).

]
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2. 2 Proposed M ethod

Let us assume that initial approximate so-
lutions of Eg. (8 A™ and &' are known.

Denoting the approximate eigenvalues and
the associated eigenvectors after k iterations
by A® and ¥®, the residual vector becomes
as follows;

RO — AT — BP0 10)
and

(TS =1, (11
where the residual matrix R = [r® .. - r,¥]

denotes the error for each eigenpair, and is
not generally zero because of substitution of
approximate values into Eq. (8).

In order to get the solutions converged to
the multiple eigenvalues and the associated
eigenvectors of the system, the residual vec-
tors should be removed. For the purpose of
that, the Newton-Raphson technique is ap-
plied such as

RUHD = 4 @it _ g et vy (12)
and

()T gt = , (13)
where

A% = A® 1 JA% and (14)

Pl — g 4 g (15)

Substituting Eqgs (14) and (15) into Eqs (12)
and (13) and neglecting the nonlinear terms
BATYAA(R) and (ATW)TB AT® it vields the
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linear simultaneous equations for unknown
incremental values 4A% and A¥® as follows;

Adlp(m _ Bdw-(&-)/l(k) _ Bw-(k)AAw) — _R(A») (16)
and
@*) BT = 0 (17

Since the eigenvalue is multiple, the offdia-
gonal elements of A® are zero or very small
compared with its diagonal at kth iteration
step, and the diagonal element very close.
Thus, the second term in right side of Eq.
(16) may be approximated by AYBAF« w-
hich yields

AP — JPBAPY — BPUAN® = —R¥  (18)

The Matrix form of Eqs (18) and (17) can
be written such as

(A_A](A')B) _Bw-(k)] dw(l\')]

R(k)
(— BT 0 AW -_[ 0

] (19)
Because the new coefficient matrix should be
reformed and refactorized in each iteration
step, the proposed method, despite of its
rapid convergence, is not efficient.

These blemishes may be overcome by ap-
plying the modified Newton-Raphson techni-
que to Eq. (19) such as

(A—/I{O)B) _Bw-(k) dw(k) R(k)
(__Bw-(r:))T 0 ] [AA(/.-)] = __[ (20)

The symmetric coefficient matrix of Eq. (20)
is of order (Zn+m). While singularity occurs
in factorization process of the iteration meth-
ods such as the inverse iteration method!®~!?



and the subspace iteration method'?'® when
the shift is close to an eigenvalue of the
system, nonsingularity of the proposed meth-
od is always guaranteed by means of includ-
ing a side condition (¥“YBA¥Y*® =0 as
shown in Eq. (20). This is the main differ-
ence compared with the iteration method
with shift. The complete procedure of the
proposed method for caleulating the eigenpai-
rs is summarized in table 1.

2.3 Nonsingularity of the Proposed Me-
thod

In the iteration methods such as the in-
verse and the subspace iteration methods,
the shifting algorithm is adopted to improve
the convergence. However, singularity may
be occurred during the factorizing process
when the shift value is close to an eigenvalue
of the system. One of the characteristics of
the proposed method is that its nonsingularity

Table 1 The algorithm of the proposed method

1. Calculate initial values A® = digg(A®--- M)
and ¥ = (P .- - g®),
(a) For k=0

A-A"B mbw]

(b) Define [—(B&B'S-*’)T 0

(k)
(c) Compute —[R;) ]

where RM = [#®...p®],

=A1p(k) —_ Blp(b)/l(k)
(A—A"B) —BW"][4P"
(d) Compute (— By 0 ] AAuo]
R LR®
=% ]fOI AA"')]

(e) Compute A% = A% + 44* and
-W(lﬁl) — w-(k) + Aw(k)

(f) If the norm of the residual vector does
not satisfy the predetermined error limit,
then go to (b) with A=k +1,
otherwise stop.

Ak - AdR. 979 0]9%

is also guaranteed in this situation. If the
proposed method is nonsingular when the
shift values is an eigenvalue itself, the coef-
ficient matrix encountered in the iteration
process must necessarily be nonsingular.
Therefore, the nonsingularity of the proposed
method is proved by introducing the new ei-
genproblem of the resulting matrix such as ‘

Eu=yFu i=1, -+, 2u+m (21)
where 7 and u; are the ith eigenvalue and

the associated eigenvector of the new eigen-
problem, respectively, and

_[A—AB -BWv
E= [(—BW 0 ] (22)
C Moo
F=(M 0 0 (23)
0 0 I,
or collectively
EU=FUT (24)

where I'=diga(y1 -~ - Yourm) and U = (u, ---
Un+w) The eigenpairs of the Eq. (24) are as
follows;

« Eigenvalue 7;

-1 1ms
1 ims (25)
(A—A)k=m+1, -+, 2n [ (n—m)s

» Eigenvector u,

B R ) S

where e is an unit vector of order m such as
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ef=<0---010---0>
— jth loaction (27)

Considering the determinant of Eq. (24),

det[E]det[U] = det[F]det[Uldet[I1]

- or
det[E] = det[Fldet[]]
= (—D)"det[F] I (A—4)
*() (28)
because of
C M 0
detlF1=|M 0 o= il]‘(ﬂ
0 0 I.
= (—1)"det[M]det[M]
*0 (29)

The determinant of E is not equal to zero
because det[M]+0 by definition. The nonsi-
ngularity of the proposed method is proved
analytically.

2.4 Starting Values of the Proposed
Method

Initial values of the proposed method can
be obtained as the intermediate results of
the iteration methods'™™'¥ or results of ap-
proximate methods®~*®. In this paper, the
starting values are taken as the results of
the symmetric Lanczos method®™ with selecti-
vely reorthogonalization process because the
method does not need complex arithmetic in
the Lanczos recursive ,process, and because
the multiplicity of the desired eigenvalues

210 FMTEEst H112 &1 (1998, 3)

can be checked by the results of the 4p La-
nezos vectors (p ithe number of desired eige-
nvalues). In the Lanczos method, the initial
Lanczos vectors is set equal to A™' (1---1)7
and is normalized with respect to matrix B.

3. Numerical Examples

In this section two test problems with mul-
tiple eigenvalues are used to assess the per-
formance of the proposed method for gener-
alized eigenproblems. The CPU time spent
for the first twelve eigenvalues and the as-
soclated eigenvectors and the variation of the
error norm to each iteration step of the pro-
posed method are compared with those of
the subspace iteration method'®. The least
subspace dimension to effectively calculate
required eigenpairs is 2p (=24). Each method
is stopped when the error norms are reduced
by the factor of 107% which yields a stable
eigensolution and sufficient accuracy in the
calculated eigenvalues and eigenvectors for

practical analysis®

. The error norm® is de-

fined as
= LA (30
where
RO =Tp# - o - pl]
APY — ByPg® (31)

All executions are done on the CONVEX
(C3420 with 100 MIPS and 200 MFLOPS.

3.1 Plane Frame Structure with Lumped
Dampers
The finite element model of a plane frame



is used as the first example. The Dimensio-
nless values of the geometric configuration
and material properties are shown in Fig. 1.
The model is discretized in 200 beam eleme-
nts resulting in the system of dynamic equa-
tions with a total of 590 degrees of freedom.
Thus, the order of the associated eigenpro-
blem is 1,180. The consistent mass matrix is
used for M. Its damping matrix is derived
from the proportional damping expression
given by C = aM+ 8K and concentrated da-
IPETS. )

The eigenvalues of the model are shown in
Table 2. All the eigenvalues of the model are
multiple. The variations of the error norms
to increasing the iteration step are shown in
Figs 2 to 4. The error norms of the initial
values obtained by using the 4p (=48) La-
nczos vectors are about 0.7 to 1077, which
are possible to check the multiplicity of the
desired eigenvalues. The number of iterations
for the proposed method applied to the initial
values that do not satisfy the error norm 107°
is only one. The results in Figs 2 to 3 indi-
cate that the convergence of the proposed
method is much better than that of the su-
bspace iteration method. The CPU time for
the proposed method is compared with that

YOUNG 'S MODULLS ¢ 1.000
‘ MASS DENSITY L0
é CROSS-SECTION INERTIA ;1.0
(g CROSS-SECTION AREA © Lo

DAMFPING COEFFICIENTS

fe=0001, F:0.001

ol

CONCENTRATED DAMPING : 0.3

i
T
W - 100gel=10 - -»l

Fig. 1 Plane frame structure with Ilumped
dampers
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of the subspace iteration method in Table 3.
If we let the solution time for the proposed
method be 1, it takes 3.55 times for the su-
bspace iteration method. In Table 4, the CPU
time for the Lanczos method is summarized.
Because the method does not need complex
operations, the less solution time is required.
However, the some results of the Lanczos

Table 2 Eigenvalues of the plane frame struc-
ture with multi-lumped dampers

Mode Number Eigenvalues
1 —0.09590 + j 8.66792
2 —0.095%0 + j 8.66792
3 —0.09590 — j 8.66792
4 —0.09590 — j 8.66792
A —0.60556 + j 15.5371
6 —0.60556 + j 155371
7 —0.60666 — j 15.5371
8 —0.60556 — j 16.5371
9 —0.57725 -+ j 20.7299
10 —0.57725 + j 20.7299
11 —0.67726 — j 20.7299
12 =(0.67725 — | 20.7299

Table 3 CPU time spent for the first twelve
eigenvalues of the plane frame struc-
ture with multi-lumped dampers

CPU time in

Methods seconds (Ratio)
Proposed method 872.69(1.00)
Subspace iteration method 3,096.62 (3.55)

Table 4 CPU time for the Lanczos method vs.
the number of generated Lanczos

vectors
The number of generated CPU time in
Lanczos vectors seconds
24 116.20
36 185.54
48 260.37
60 332.90
72 408.63
84 492.83
96 664.27

FatprEzat 1A AMzoes 3 211
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method as shown in Fig, 4 are not improved
in spite of the increase of the number of the
Lanczos vectors.

3.2 Three-Dimensional Frame Structure
with Concentrated Dampers

In this example a three-dimensional build-

ing structure with concentrated darmpers is

LANCZOS MethQqa
(48 Lanczos Vectors) ]

1.0E+0 - T
1.0E-1 -
1.0E2 - -
1.0E3 -
1.0E-4 | -
1.0E5 - .
1.0E6
1.0E-7
1.0E8 |
1.0E9 -
1.0E-10 .

1.0E-11 L !
0 1 2 3

lteration Number

Fig. 2 Variation of the error norm of the
frame model by the proposed method

Error Morm

|

1.0E+0
1.0E-1
1.0E-2
1.0E-3

1.0E-4

Error Norm

1.0E-5

1.0E-6 |-

Error Lirmit
1.0E-7 - —

1.0E-8 Lol lonbadeen b o,
0 5 10 15 20 25 30 35 40 45 50

Iteration Number

Fig. 3 Variation of the error norm of the
frame model by the subspace iteration
method
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—»— 1st, 3rd eigenpairs
—&— 2nd, 4th eigenpairs
—4@)— 5th, 6th eigenpairs
—4&p— 7th, 8th eigenpairs
——  Oth, 11th eigenpairs
—}— 10th, 12th eigenpairs

1.0E+0
1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
1.0E-9

1.0E-10 L
12 24 36 48 60 72 84 96 108

Nurrber of Generated Lanczos Vector

Fig. 4 Variation of the error norm of the
frame model by the Lanczos method

Error Norm

presented. The geometric configuration and
material properties are shown in Fig. 5. The
model is divided into 436 beam elements and
has 1,128 degrees of freedom. The order of
the associated eigenproblem is 2,256. The
consistent mass matrix is used to define M.

The damping matrix consists of the Rayle-
12h damping and concentrated dampers.

The results of the proposed method are
summarized in Table 5. The first and second
eigenvalue are coincident, and also the ninth
and tenth eigenvalues and their conjugate ei-
genvalues coincident. The variations of the
error norms to increasing the iteration step
are shown in Figs 6 to 8 The first step of
the proposed method denotes the results of
the Lanczos algorithm. The error norms of
the initial values obtained by using the 48
Lanczos vectors are about 107* to 107" The
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Fig. 5 (a) Three-dimensional building structure

(b) Damping from two-layer foundation

Table 5 Eigenvalues of the 3-dimensional build-
ing structure with concentrated damp-

ers

Mode Number Eigenvalues
1 —0.13811 + j 3.09308
2 —0,13811 + j 3.09308
3 —0.13811 — j 3.09308
4 —0.13811 — j 3.09308
5 —3.53017 + j 2.20867
6 —3.63017 — j 2.20867
7 —0.24297 + j 4.16980
8 —0.24297 — j 4.16980
9 —1.65509 + j 7.04244
10 —1.65509 + j 7.04244
11 —1.665609 — j 7.04244
12 —1.656609 — j 7.04244

number of iterations for the proposed method
applied to initial values that do not satisfy
the error norm 107° is one or two. The resu-
Its in Figs 6 to 8 indicate that the converge-
nce of the proposed method is much better
than that of the subspace iteration method.
The CPU time for the proposed method is

compared with the subspace iteration method
in Table 6. If we let the solution time for
the proposed method be 1, it takes 1.09 times
for the subspace iteration method. In Table
7, the CPU time for the Lanczos method
summarized is summarized. Because the
method does not need the complex operations,
the less solution time is required. However,
the some results of the Lanczos method as
shown Fig. 8 are not improved in spite of
the increase of the number of the Lanczos
vectors.

Table 6§ CPU time spent for the first twelve
eigenvalues of the 3-dmensional build-

ing structure with  concentrated
dampers
Methods CPU time in sec-

onds (Ratio)

7.641.94 (1.00)
8,337.60 (1.09)

Proposed method
Subspace iteration method

Table 7 CPU time for the Lanczos method vs.
the number of generated Lanczos

vectors
The number of generated | CPU time in sec-
Lanczos vectors onds
24 613.33
36 933.51
48 1,246.60
60 1,572.73
72 2,000.39
84 2,227.23
96 2,682,717

4. Conclusions

An efficient method for solving damped
structural dynamic eigenproblems with multi-
ple eigenvalues as well as distinct ones is
presented. Characteristics of the proposed
method identified by the numerical results
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Fig. 6 Variation of the error norm of the 3-di-

mensional building by the proposed me-
thod
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Iteration Nurmber

Fig. 7 Variation of the error norm of the 3-di-
mensiona building by the subspace ite-
ration method

from test problems are identified as follows;
(D Since the convergence rate of the pro-
posed method is high, the proposed method is
very effective for solving damped dynamic
systems with a large number of degrees of
freedom.
@ Nonsingularity of the proposed method
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—»— 1st, 3rd efgenpairs

—A— 2nd, 4th eigenpairs

—4@— 5th, 6th eigenpairs

—&@— 7th, Bth eigenpairs

—9—  9th, 11th sigenpairs
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Fig. 8 Variation of the error norm of the 3-di-
mensional building by the Lanczos meth-
od

is always guaranteed, which is proved ana-
lytically.

@ The algorithm of the proposed method is
simple.
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