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Abstract

Formation controller for multiple spacecrafts is designed based on a

decentralized approach. The objective of the proposed controller is to make each

spacecraft fly to the desired waypoints, while keeping the formation shape of multiple

spacecrafts. To design the decentralized formation controller, the output feedback

linearization technique using error functions for goal convergence and formation

keeping is utilized for spacecraft dynamics. The primary contribution of this paper is

to proposed optimal controller for formation flying based on the decentralized

approach. To design the optimal controller, eigenvalue assignment technique is used.

To verify the effectiveness of the proposed controller, numerical simulations are

performed for three-dimensional waypoint-passing missions of multiple spacecrafts.

Key Word : Spacecraft, Formation flying, Decentralized method, Optimal controller,
Eigenvalue assignment technique

Introduction

Formation control for multiple spacecrafts has been an extensive research area over the

decades. The multiple spacecrafts formation flying has several merits including the improved

performance, reduced cost, reconfigurability, system robustness, and instrument resolution

compared to a large single spacecraft [1-2].

Generally, there are two approaches to multiple spacecrafts formation method: centralized

and decentralized method [3]. In the centralized method, there is a leader which works as a

manager to offer a reference trajectory toward the goal, and the followers track the position and

orientation with respect to the leader. The centralized method is easy to implement; however, the

whole system may be collapsed when the leader has some problems. Moreover, this method

requires full state information for communication with each other, and therefore there may be a

delay in reaction to an unexpected situation [3]. In the decentralized method, on the other hand,

each spacecraft has the desired objectives such as collision avoidance, goal seeking, and formation

keeping. This approach can be implemented with less communication, and the formation objectives

can be easily changed depending on the circumstances. However, it is difficult to analyze the

stability of the formation control scheme [4-6].

The objective of this study is to propose an optimal controller for spacecraft formation

flying based on the decentralized approach. It is assumed that each spacecraft has own objective

to move to the given waypoints, and to keep the formation pattern. To design the formation

controller, output feedback linearization is used and it is assumed that each spacecraft can

communicate each other to share the information of position and attitude. The optimization of gain

matrices is also performed to obtain better efficiency of spacecraft formation flying.
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This paper is organized as follows. In second section, the output feedback linearization of

spacecraft dynamics is derived. In third section, the decentralized formation controller and control

gain optimization method are proposed. Numerical simulation and analysis to verify the

performance of the proposed controller are described in fourth section. Finally, conclusions are

presented in final section.

Spacecraft Dynamics

Consider the equations of motion of a spacecraft.

1

2

0 0
0

0 0
0

r u

q u

v
g g

x u
q
g g

é ù é ù
ê ú ê ú
ê ú ê ú= +ê ú ê ú
ê ú ê ú
ê ú ë ûë û

&
&

(1)

with

2
3

2
3 3

3

2
( )

2
( )

( )

r

xy y x
xi y R j zk

y R Rg x x y
xi y R j zk Rj

z
xi y R j zk

mq q q

q q q m

m

é ù+ + -ê ú+ + +ê ú
ê úæ ö+ê úç ÷= - - + - -ê úç ÷+ + +ê úè ø
ê ú
ê ú-
ê ú+ + +ë û

& && &&

& && &&

(2)

1

2

ˆ ˆ1
2 ˆ ˆ

q
q T Tq

g h q hq w q wq
g

g h q w q

é ùé ù - ´ + - ´ +
= = ê úê ú

ê ú- -ë û ë û

& &

& (3)

[ ]1h J w Jw-- ´�

1 3 3

21 13 3
2

22

1

ˆ1
ˆ2

u

u
u T

u

g I
m
g q qI

g J
g q

´

´
-´

=

é ùé ù +
= = ê úê ú -ë û ë û

(4)

where the state vector       
 denotes the position     ∈ × , velocity ∈× ,

quaternion     ∈ × , and quaternion rate of the spacecraft ∈× . The control input

vector     denotes the control force and torque, respectively.    and  are the moment

of inertia, mass, angular velocity, and gravitational coefficient, respectively.

The output of the system is given by
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Differentiating twice with respect to time yields
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Note that the system is output feedback linearizable if the following condition is satisfied.
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The above condition can be simplified as ≠ [7].

Let us defined the map   ↦ to be a diffeomorphism as
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Using Eq. (8) and Eq. (9), Eq. (1) can be transformed to
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The control input using output feedback linearization can be obtained with a new pseudo

control input  as

( )1u G v P-= - (11)

Finally, the linearized system can be expressed as

Y n=&& (12)

Decentralized Formation Flying and Optimal Controller.

Error Function

In this study, the decentralized formation controller is adapted, which has been studied for

formation maneuvers of ground robots [6].

Let us consider two competing objectives to design decentralized formation controller. The

first objective is to move the spacecrafts to the final goals. The second objective is to maintain

the formation shape during the maneuver. Two error functions are considered to combine these

objectives. The error function  for the first objective is the total error between the current

position of the spacecraft and the desired goal.
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where N is the total number of spacecraft,  is the position and quaternion of the i-th spacecraft,
 

 , and  is symmetric positive definite matrix.

The error function  for the second objective is given by
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where  is symmetric positive semi-definite matrix, and the notation  is used to indicate

a ring summation.

The total error function for the formation flying problem is defined as the sum of Eq. (13)

and Eq. (14) as
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The objective of decentralized formation control is to make the total error function  converge

to zero asymptotically. To simplify the equation, using the property of Toeplitz matrix C and
Kronecker product [8], Eq. (15) can be written as
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Decentralized Control Design

In this section, the coupled dynamics of formation controller is derived. Consider the

following Lyapunov function candidate.
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Differentiating Eq. (19) with respect to time gives
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Let us propose a controller as
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where  
, and  

. Substitution of Eq. (21) into Eq. (20) yields

( )T
N g fV Y I D C D Y= - Ä + Ä& && % %

(22)

Note that the Kronecker product of two positive definite matrices is positive definite. Therefore,

Eq. (22) is negative semi-definite. Moreover, the total error function  converges to zero

asymptotically by LaSalle's invariance principle, because the set     contains no
trajectory excluding    [7]. Therefore, the formation flying control law of the i-th spacecraft
is given by
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Optimal Controller

Total error function is defined as a function of the weight matrices  and  that are

related to two competing objectives: goal convergence and formation keeping. Thus, weighting

matrices should be selected considering the performance of spacecraft formation flying such as

oscillations of each spacecraft's trajectory, the goal convergence time, and the consumption of the

control input. Now, let us consider an optimization problem.

Substituting Eq. (23) to Eq. (12) gives the following equation.
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The above equation can be expressed as the general mechanical second order equation
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Note that Eq. (25) that the gain matrices  and  behave like the stiffness matrix, while  and

 act like the damping matrix of the mechanical second order system.

In this study, it is assumed that      , and  are diagonal matrices.
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where    ≧   and  ≧ are scalar variables. Then, the x-coordinate position error

equation can be expressed as
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Similarly, the y- and z-coordinate position error equations can be obtained.
Let us consider the augmented state as follows
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With the augmented states, Eq. (29) becomes
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To design the feedback gain matrix  , eigenvalue assignment approach is adopted. In this

approach, the desired closed-loop poles are selected considering the reasonable overshoot and rise

time.

To sole the closed-loop eigenvalue problem, the gain parameter vector p is given by

T

g f g fp k k d dé ù= ë û (33)

Let us consider the right and left eigenvalue problems of the closed-loop system.
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The objective is to find the parameter vector p that satisfies the design objectives: (i) to
assign some of the eigenvalues to a suitable region of the complex plane, and (ii) to maximize a

robustness of the closed-loop system. Therefore, the problem of finding the parameter vector p is
stated as a nonlinear parameter optimization problem in which the closed-loop eigenvalues become

the desired eigenvalues. In this study, the gain parameter vector is obtained using minimum norm

correction algorithm with the following constraint [9].

( ) ( ) 0df p pl l= - = (35)

where    , and  is the desired eigenvalues.

Numerical Simulation and Performance Analysis.

In this section, numerical simulation is performed to evaluate the decentralized formation

flying control with control matrices described in the previous section. A three-spacecraft

formation flying problem is considered. However, it can be easily extended to multiple spacecrafts

formation flying. The mission is that each spacecraft should fly passing through two waypoints.
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The formation patterns are chosen as follows.
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where the unit of position is meter. The next desired target waypoints are updated when the

spacecrafts are passing by the current desired waypoints.

The natural frequency and damping ratio of desired eigenvalues are selected as   and

   for fast response and little oscillation. Then, the desired eigenvalues are
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The optimized gain matrices using eigenvalue assignment method are obtained as
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Figure 1 shows how three spacecrafts fly passing through the desired waypoints in

three-dimensional space. Each spacecraft moves to the first waypoint and changes to the next

waypoint as soon as it arrives. The formation shape becomes similar, and each spacecraft

converges to the final waypoint. Moreover, the trajectories of spacecrafts are pretty smooth

passing through the waypoints. Figures 2 and 3 illustrate the histories of position and quaternion,

respectively, and Fig. 4 shows the control input history. As shown in Fig. 4, the control inputs

are fluctuated much when the spacecraft change its direction toward the next waypoint. Fig. 5

shows the distance between spacecrafts. It describes that each spacecraft moves to the final goal

without any collision. Table 1 summarizes the convergence time and the consumption of control

inputs.
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Fig. 1. Three-dimensional Trajectories
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Fig. 2. Position History Fig. 3. Quaternion History
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Fig. 4. Control Input History Fig. 5. Distance between Spacecrafts

Table 1. Spacecraft Formation Flying Performance

Convergence time to final waypints (s) 86.2339

Consumption of control force (N) 49.4755

Consumption of control torque (kg m) 0.1331
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Conclusions

In this paper, decentralized spacecraft formation flying method is proposed. The output

feedback linearization is applied for six degree-of-freedom spacecraft dynamics model. The goal

convergence and formation keeping error functions are adapted for decentralized formation flying.

To improve the performance of formation flying, optimal controller is designed based on

eigenvalue assignment technique. Numerical simulation results indicate that the proposed control

system can maintain the formation shape in the efficient way. The proposed method can be

applied not only for the satellite formation flying but also for the multiple vehicle formation

operation such as ground vehicles, mobile robots, and aerial robots.

Acknowledgement

This research has been supported by KARI under the KOMPSAT-3 Development Program

that is funded by the MEST (Ministry of Education, Science, and Technology) of the Republic of

Korea.

References

1. Lawton, J. R., Young, B. J., and Beard, R. W., 2000, "A Decentralized Approach to

Elementary Formation Maneuvers", Proceedings of the 2000 IEEE International Conference on
Robotics and Automation, San Francisco, CA.

2. Beard, R. W., Lawton, J., and Hadaegh, F. Y., 2001, "A Coordination Architecture for

Spacecraft Formation Control", IEEE Transactions on Control System Technology, Vol. 9, No. 6,
pp. 777-790.

3. Giulietti, F., Pollini, L., and Innocenti, M., 2000, "Autonomous Formation Flight", IEEE
Control Systems Magazines, Vol. 20, No. 6, pp. 34-44.

4. Liang, Y. and Lee, H., 2006, "Decentralized Formation Control and Obstacle Avoidance for

Multiple Robots with NonHolonomic Constraints", Proceedings of the 2006 American Control
Conference, Minneapolis, MN.

5. Ren, W. and Beard, R. W., 2004, "Decentralized Scheme for Spacecraft Formation Flying

via the Virtual Structure Approach", Journal of Guidance, Control. and Dynamics, Vol. 27, No. 1,
pp. 73-82.

6. Lawton, J. R., Beard, R. W., and Young, B. J., 2003, "A Decentralized Approach to

Formation Maneuvers", IEEE Transactions on Robotics and Automation, Vol. 19, No. 6, pp.
933-941.

7. Khaili, H. K., 2002, Nonlinear Systems, 3rd edition, Prentice Hall, Upper Saddle River.
8. Horn, R. and Johnson, C., 1991, Topics in Matrix Analysis, Cambridge University Press,

New York.

9. Junkins, J. L. and Kim, Y., 1993, Introduction to Dynamics and Control of Flexible
Structures, AIAA Education Series, American Institude of Aeronautics and Astronautics,

Washington, DC.

10. Franklin, G. F., Powell, J. D., and Emami-Naeini, A., 2002, Feedback Control of Dynamic
System, 4th edition, Prentice Hall, New Jersey.


