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Abstract. The evaluation of a few of the smallest eigenpairs of large symmetric
eigenvalue problem is of great interest in many physical and engineering applications.
A deflation-preconditioned conjugate gradient(PCG) scheme for a such problem has
been shown to be very efficient. In the present paper we provide the numerical
stability of a deflation-PCG with partial shifts.

1. Introduction

In this paper, we are concerned with the perturbation analysis of the deflation-
PCG scheme with partial shifts for computing a few of the smallest eigenvalues and
their corresponding eigenvectors of the generalized eigenvalue problem. The partial
eigenanalysis of large sparse symmetric matrices is a common task in many scientific
applications, e.g. structural mechanics [1], hydrodynamics [5], and plasma physics [12].

Several techniques have been developed for the solution of the partial eigenproblem,
including subspace iteration [1], Lanczos scheme [3], and multigrid [8]. A precondi-
tioned conjugate gradient(PCG) method based on the optimization of successive de-
flated Rayleigh quotients also works well for such a problem [5,7,12], and proves to
be competitive with respect to other more commonly used schemes, in particular with
respect to the Lanczos algorithm when the dimension of the eigenproblem is large [6].

Two different types of deflation techniques, which employ a PCG method to min-
imized the Rayleigh quotient, are typically used for computing a few of the smallest
eigenpairs. Those are deflation-PCG with partial shifts [5,13,14] and an orthogonal
deflation-PCG [7].

In [13], Schwartz proposed the numerical stability of the deflation-PCG with partial
shifts. Here we continue this study for general updating procedures.

2. Minimization of Rayleigh Quotients via PCG Scheme

Consider the generalized eigenvalue problem

(1) Ax = λBx,
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where A and B are large sparse symmetric positive definite matrices of dimension n.
Let

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn

be the eigenvalues (1), and let z1, z2, · · · , zn be the corresponding eigenvectors, which
satisfy

Azi = λiBzi, zi
T Bzi = 1, i = 1, 2, · · · , n.

The eigenvectors of (1) are the stationary points of the Rayleigh quotient

(2) R(x) =
xT Ax

xT Bx
,

and the gradient of R(x) is given by

g(x) =
2

xT Bx
[Ax−R(x)Bx].

For an iterate x(k), the gradient of R(x(k)),

∇R(x(k)) = g(k) = g(x(k)) =
2

x(k)T Bx(k)

[
Ax(k) −R(x(k))Bx(k)

]
,

is used to fix the direction of descent p(k+1) in which R(x) is minimized. These directions
of descent are defined by

p(1) = −g(0), p(k+1) = −g(k) + β(k)p(k), k = 1, 2, · · · ,

where β(k) =
g(k)T g(k)

g(k−1)T g(k−1)
[11]. The subsequent iterate x(k+1) along p(k+1) through

x(k) is written as
x(k+1) = x(k) + α(k+1)p(k+1), k = 0, 1, · · · ,

where α(k+1) is obtained by minimizing R(x(k+1)) [9],

R(x(k+1)) =
x(k)T Ax(k) + 2α(k+1)p(k+1)T Ax(k) + α(k+1)2p(k+1)T Ap(k+1)

x(k)T Bx(k) + 2α(k+1)p(k+1)T Bx(k) + α(k+1)2p(k+1)T Bp(k+1)
.

The performance of the CG scheme can be improved by using a preconditioner [2,4].
The idea behind the PCG is to apply the “regular” CG scheme to the transformed
system

Ãx̃ = λB̃x̃,

where Ã = C−1AC−1, B̃ = C−1BC−1, x̃ = Cx, and C is nonsingular symmetric
matrix. By substituting x = C−1x̃ into (2), we obtain

(3) R(x̃) =
x̃T C−1AC−1x̃

x̃T C−1BC−1x̃
=

x̃T Ãx̃

x̃T B̃x̃
,

where the matrices Ã and B̃ are symmetric positive definite. The transformation (3)
leaves the stationary values of (2) unchanged, which are eigenvalues of (1), while the
corresponding stationary points are obtained from x̃j = Czj , j = 1, 2, · · · , n.
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3. Perturbation Analysis of Higher Eigenvalue Computation

3.1. Deflation-PCG with partial shifts. In most applications not only the smallest
but some of the smallest stationary values of the Rayleigh quotient are wanted. The
PCG scheme in §2 can be modified using a deflation based on a partial shift of the
spectrum, so that the next higher eigenvalues can be computed by essentially the same
process.

When the first r− 1 eigenpairs are approximately known, the next eigenpair (λr, zr)
could be obtained by minimizing the Rayleigh quotient R(x) of the modified eigenprob-
lem Arx = λBx, where Ar is defined by

(4) Ar = A +
r−1∑

k=1

σk(Bzk)(Bzk)T ,

with σk is the shift that satisfies σk > 0 and λk + σk > λr, k = 1, 2, · · · , r − 1.
It is clear that the eigenvalues and eigenvectors of Arx = λBx satisfy, because of the

B-orthonormality of the zj ,

Arzj = Azj +
r−1∑

k=1

σk(Bzk)(Bzk)T zj

=

{
(λj + σj)Bzj , j = 1, 2, · · · , r − 1;

λjBzj , j = r, r + 1, · · · , n.

The eigenpair (λr, zr) could then be determined from the PCG in §2 by replacing A by
Ar.

In the proposed method we assume that the shifts σi are chosen properly. Some
ways of deterimining the shifts σi are reported in [14].

If the preconditioner M is kept fixed for minimizing the Rayleigh quotient of the
modified eigenproblem Arx = λBx, the preconditioning effect is lost for increasing r
in general. Thus it is necessary to use an equivalent preconditioner for the matrix Ar

that takes into account the deflation steps [13].

3.2. Numerical stability. In this section we present a numerical stability of the de-
flation process (4). We first cite the theorem in [10]. It provides a error bound on Ritz
value which approximates a eigenvalue of the symmetric eigenvalue problem.

Lemma 3.1. Let A be a symmetric matrix with eigenpairs (λi, zi). Let y be a 2-
normalized vector with θ = yT Ay and residual r(y) = Ay− θy. Let λ be the eigenvalue
of A closest to θ, let z be its 2-normalized eigenvector, and let ψ = ∠(y, z). Then

| sinψ| = ‖r(y)‖2

d
and |θ − λ| ≤ ‖r(y)‖2

2

d
,

where d = min |λi − λ| over all λi 6= λ.
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The straightforward extention of Lemma 3.1, with the appropriate pair of vector
norms ‖x‖B =

√
xT Bx and ‖x‖−1

B =
√

xT B−1x, to the generalized eigenvalue problem
yields the following theorem [13].

Theorem 3.2. Let A and B be symmetric matrices and B positive definite and
(λi, zi) be the eigenpairs of Ax = λBx. Let x be a B-normalized vector with θ = xT Ax
and the residual r(x) = Ax − θBx. Let λ be the eigenvalue of the matrix pair (A,B)
closest to θ, let z be its B-normalized eigenvector, and let ψ = ∠(x, z). Then

(5) | sinψ| = ‖r(x)‖B−1

d
and |θ − λ| ≤ ‖r(x)‖2

B−1

d
,

where d = min |λi − λ| over all λi 6= λ.

For the assumption that an approximation ẑk of the eigenvector zk has been deter-
mined with a relative accuracy εk and being B-normalized, the approximations ẑk can
be expressed as

(6) ẑk = ck
(k)zk + εk

n∑

i=1
i6=k

ci
(k)zi with ‖

n∑

i=1
i6=k

ci
(k)zi ‖B = 1, k = 1, · · · , r − 1.

Here the coefficients ck
(k) satisfy

ck
(k)2 + ε2

k(
n∑

i=1
i6=k

ci
(k)2) = ck

(k)2 + ε2
k = 1 and ck

(k) ∼= 1− 1
2ε2

k.

To make the statements below neatly, we define ε and cr as

(7) |ε| = max
1≤k≤r−1

|εk|, |cr| = max
1≤k≤r−1

|c(k)
r |.

We now show the influence of the approximations ẑk, k = 1, · · · , r − 1, to the next
higher eigenvalue λr.

Theorem 3.3. Let (λr, zr) be the eigenpair of the matrix Ar in (4), and let ẑk be
the approximations of the eigenvectors zk, for k = 1, · · · , r − 1, as in (6). And let λ̂r

be the computed eigenvalue of Âr = A +
r−1∑

k=1

σk(Bẑk)(Bẑk)T with the same shifts σk in

(4). Let ε and cr be defined as in (7). Then

(8) |λ̂r − λr| ≤ 1
dr

ε2c2
r

r−1∑

k=1

σ2
k,
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where dr = min
i6=r

|λ̂r − λ̂i| and λ̂is are all eigenvalues computed from Âr.

Proof. We have

Âr = A +
r−1∑

k=1

σk(Bẑk)(Bẑk)T

= A +
r−1∑

k=1

σk(ck
(k)Bzk + εk

n∑

i=1
i6=k

ci
(k)Bzi)(ck

(k)Bzk + εk

n∑

j=1
j 6=k

cj
(k)Bzj)T

= A +
r−1∑

k=1

σkck
(k)2(Bzk)(Bzk)T

+
r−1∑

k=1

σkεkc
(k)
k




n∑

i=1
i6=k

ci
(k)

{
(Bzk)(Bzi)T + (Bzi)(Bzk)T

}



+
r−1∑

k=1

σkεk
2




n∑

i=1
i 6=k

n∑

j=1
j 6=k

ci
(k)cj

(k)(Bzi)(Bzj)T




= A +
r−1∑

k=1

σk(1− εk
2)(Bzk)(Bzk)T

+
r−1∑

k=1

σkεkc
(k)
k




n∑

i=1
i6=k

ci
(k)

{
(Bzk)(Bzi)T + (Bzi)(Bzk)T

}



+
r−1∑

k=1

σkεk
2




n∑

i=1
i 6=k

n∑

j=1
j 6=k

ci
(k)cj

(k)(Bzi)(Bzj)T




= Ar +
r−1∑

k=1

σkεk




n∑

i=1
i6=k

ci
(k)

{
(Bzk)(Bzi)T + (Bzi)(Bzk)T

}

 + O(ε2)
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Now, we get the Ritz value θr = zT
r Ârzr and the residual r(zr) = Ârzr − θBzr by

applying Theorem 3.2 with A = Âr and x = zr. We first consider

Ârzr = Arzr +
r−1∑

k=1

σkεk




n∑

i=1
i6=k

ci
(k)

{
(Bzk)(Bzi)T + (Bzi)(Bzk)T

}

 zr + O(ε2)

= Arzr +
r−1∑

k=1

σkεkcr
(k)(Bzk) + O(ε2),

and get

θr = zr
T Ârzr = zr

T Arzr + zr
T {

r−1∑

k=1

σkεkcr
(k)(Bzk)}+ O(ε2)

= λr + O(ε2).

We have

r(zr) = Ârzr − θrBzr

= Arzr +
r−1∑

k=1

σkεkcr
(k)(Bzk)− λrBzr + O(ε2)

=
r−1∑

k=1

σkεkcr
(k)(Bzk) + O(ε2)

and

‖r(zr)‖2
B−1 = {

r−1∑

k=1

σkεkcr
(k)(Bzk)}T B−1{

r−1∑

k=1

σkεkcr
(k)(Bzk)}

=
r−1∑

k=1

σk
2εk

2cr
(k)2.

Now from (5), it follows that

|λ̂r − λr| ≤
‖r(zr)‖2

B−1

dr
=

1
dr

r−1∑

k=1

σk
2εk

2cr
(k)2 ≤ 1

dr
ε2c2

r

r−1∑

k=1

σ2
k,

where dr = min
i6=r

|λ̂r − λ̂i|. ¤
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In [13] they considered the bounds of λ̂k, k ≥ 2, based only on the Â2 while the
bound we obtained in (8) concerns for general updating procedure. Furthermore, we
only need to focus on the bound of λ̂r, which is the smallest eigenvalue of Âr, rather
than the bounds of eigenvalues λ̂k, k > 2, of Â2 as in [13].
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