PERTURBATION ANALYSIS OF DEFLATION TECHNIQUE FOR SYMMETRIC EIGENVALUE PROBLEM

HO-JONG JANG

Abstract

The evaluation of a few of the smallest eigenpairs of large symmetric eigenvalue problem is of great interest in many physical and engineering applications. A deflation-preconditioned conjugate gradient(PCG) scheme for a such problem has been shown to be very efficient. In the present paper we provide the numerical stability of a deflation-PCG with partial shifts.

1. Introduction

In this paper, we are concerned with the perturbation analysis of the deflationPCG scheme with partial shifts for computing a few of the smallest eigenvalues and their corresponding eigenvectors of the generalized eigenvalue problem. The partial eigenanalysis of large sparse symmetric matrices is a common task in many scientific applications, e.g. structural mechanics [1], hydrodynamics [5], and plasma physics [12].

Several techniques have been developed for the solution of the partial eigenproblem, including subspace iteration [1], Lanczos scheme [3], and multigrid [8]. A preconditioned conjugate gradient(PCG) method based on the optimization of successive deflated Rayleigh quotients also works well for such a problem [5,7,12], and proves to be competitive with respect to other more commonly used schemes, in particular with respect to the Lanczos algorithm when the dimension of the eigenproblem is large [6].

Two different types of deflation techniques, which employ a PCG method to minimized the Rayleigh quotient, are typically used for computing a few of the smallest eigenpairs. Those are deflation-PCG with partial shifts [5,13,14] and an orthogonal deflation-PCG [7].

In [13], Schwartz proposed the numerical stability of the deflation-PCG with partial shifts. Here we continue this study for general updating procedures.

2. Minimization of Rayleigh Quotients via PCG Scheme

Consider the generalized eigenvalue problem

$$
\begin{equation*}
A x=\lambda B x, \tag{1}
\end{equation*}
$$

Key words: symmetric eigenproblem, preconditioned conjugate gradients, deflation
where A and B are large sparse symmetric positive definite matrices of dimension n. Let

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{n}
$$

be the eigenvalues (1), and let $z_{1}, z_{2}, \cdots, z_{n}$ be the corresponding eigenvectors, which satisfy

$$
A z_{i}=\lambda_{i} B z_{i}, z_{i}^{T} B z_{i}=1, i=1,2, \cdots, n .
$$

The eigenvectors of (1) are the stationary points of the Rayleigh quotient

$$
\begin{equation*}
R(x)=\frac{x^{T} A x}{x^{T} B x} \tag{2}
\end{equation*}
$$

and the gradient of $R(x)$ is given by

$$
g(x)=\frac{2}{x^{T} B x}[A x-R(x) B x] .
$$

For an iterate $x^{(k)}$, the gradient of $R\left(x^{(k)}\right)$,

$$
\nabla R\left(x^{(k)}\right)=g^{(k)}=g\left(x^{(k)}\right)=\frac{2}{x^{(k)^{T}} B x^{(k)}}\left[A x^{(k)}-R\left(x^{(k)}\right) B x^{(k)}\right]
$$

is used to fix the direction of descent $p^{(k+1)}$ in which $R(x)$ is minimized. These directions of descent are defined by

$$
p^{(1)}=-g^{(0)}, p^{(k+1)}=-g^{(k)}+\beta^{(k)} p^{(k)}, k=1,2, \cdots,
$$

where $\beta^{(k)}=\frac{g^{(k)^{T}} g^{(k)}}{g^{(k-1)^{T}} g^{(k-1)}}[11]$. The subsequent iterate $x^{(k+1)}$ along $p^{(k+1)}$ through $x^{(k)}$ is written as

$$
x^{(k+1)}=x^{(k)}+\alpha^{(k+1)} p^{(k+1)}, k=0,1, \cdots,
$$

where $\alpha^{(k+1)}$ is obtained by minimizing $R\left(x^{(k+1)}\right)$ [9],

$$
R\left(x^{(k+1)}\right)=\frac{x^{(k)^{T}} A x^{(k)}+2 \alpha^{(k+1)} p^{(k+1)^{T}} A x^{(k)}+\alpha^{(k+1)^{2}} p^{(k+1)^{T}} A p^{(k+1)}}{x^{(k)^{T}} B x^{(k)}+2 \alpha^{(k+1)} p^{(k+1)^{T}} B x^{(k)}+\alpha^{(k+1)^{2}} p^{(k+1)^{T}} B p^{(k+1)}} .
$$

The performance of the CG scheme can be improved by using a preconditioner [2,4]. The idea behind the PCG is to apply the "regular" CG scheme to the transformed system

$$
\tilde{A} \tilde{x}=\lambda \tilde{B} \tilde{x}
$$

where $\tilde{A}=C^{-1} A C^{-1}, \tilde{B}=C^{-1} B C^{-1}, \tilde{x}=C x$, and C is nonsingular symmetric matrix. By substituting $x=C^{-1} \tilde{x}$ into (2), we obtain

$$
\begin{equation*}
R(\tilde{x})=\frac{\tilde{x}^{T} C^{-1} A C^{-1} \tilde{x}}{\tilde{x}^{T} C^{-1} B C^{-1} \tilde{x}}=\frac{\tilde{x}^{T} \tilde{A} \tilde{x}}{\tilde{x}^{T} \tilde{B} \tilde{x}}, \tag{3}
\end{equation*}
$$

where the matrices \tilde{A} and \tilde{B} are symmetric positive definite. The transformation (3) leaves the stationary values of (2) unchanged, which are eigenvalues of (1), while the corresponding stationary points are obtained from $\tilde{x}_{j}=C z_{j}, j=1,2, \cdots, n$.

3. Perturbation Analysis of Higher Eigenvalue Computation

3.1. Deflation-PCG with partial shifts. In most applications not only the smallest but some of the smallest stationary values of the Rayleigh quotient are wanted. The PCG scheme in $\S 2$ can be modified using a deflation based on a partial shift of the spectrum, so that the next higher eigenvalues can be computed by essentially the same process.

When the first $r-1$ eigenpairs are approximately known, the next eigenpair $\left(\lambda_{r}, z_{r}\right)$ could be obtained by minimizing the Rayleigh quotient $R(x)$ of the modified eigenproblem $A_{r} x=\lambda B x$, where A_{r} is defined by

$$
\begin{equation*}
A_{r}=A+\sum_{k=1}^{r-1} \sigma_{k}\left(B z_{k}\right)\left(B z_{k}\right)^{T} \tag{4}
\end{equation*}
$$

with σ_{k} is the shift that satisfies $\sigma_{k}>0$ and $\lambda_{k}+\sigma_{k}>\lambda_{r}, k=1,2, \cdots, r-1$.
It is clear that the eigenvalues and eigenvectors of $A_{r} x=\lambda B x$ satisfy, because of the B-orthonormality of the z_{j},

$$
\begin{aligned}
A_{r} z_{j} & =A z_{j}+\sum_{k=1}^{r-1} \sigma_{k}\left(B z_{k}\right)\left(B z_{k}\right)^{T} z_{j} \\
& = \begin{cases}\left(\lambda_{j}+\sigma_{j}\right) B z_{j}, & j=1,2, \cdots, r-1 \\
\lambda_{j} B z_{j}, & j=r, r+1, \cdots, n\end{cases}
\end{aligned}
$$

The eigenpair (λ_{r}, z_{r}) could then be determined from the PCG in $\S 2$ by replacing A by A_{r}.

In the proposed method we assume that the shifts σ_{i} are chosen properly. Some ways of deterimining the shifts σ_{i} are reported in [14].

If the preconditioner M is kept fixed for minimizing the Rayleigh quotient of the modified eigenproblem $A_{r} x=\lambda B x$, the preconditioning effect is lost for increasing r in general. Thus it is necessary to use an equivalent preconditioner for the matrix A_{r} that takes into account the deflation steps [13].
3.2. Numerical stability. In this section we present a numerical stability of the deflation process (4). We first cite the theorem in [10]. It provides a error bound on Ritz value which approximates a eigenvalue of the symmetric eigenvalue problem.

Lemma 3.1. Let A be a symmetric matrix with eigenpairs $\left(\lambda_{i}, z_{i}\right)$. Let y be a 2normalized vector with $\theta=y^{T} A y$ and residual $r(y)=A y-\theta y$. Let λ be the eigenvalue of A closest to θ, let z be its 2-normalized eigenvector, and let $\psi=\angle(y, z)$. Then

$$
|\sin \psi|=\frac{\|r(y)\|_{2}}{d} \quad \text { and } \quad|\theta-\lambda| \leq \frac{\|r(y)\|_{2}^{2}}{d}
$$

where $d=\min \left|\lambda_{i}-\lambda\right|$ over all $\lambda_{i} \neq \lambda$.

The straightforward extention of Lemma 3.1, with the appropriate pair of vector norms $\|x\|_{B}=\sqrt{x^{T} B x}$ and $\|x\|_{B}^{-1}=\sqrt{x^{T} B^{-1} x}$, to the generalized eigenvalue problem yields the following theorem [13].

Theorem 3.2. Let A and B be symmetric matrices and B positive definite and $\left(\lambda_{i}, z_{i}\right)$ be the eigenpairs of $A x=\lambda B x$. Let x be a B-normalized vector with $\theta=x^{T} A x$ and the residual $r(x)=A x-\theta B x$. Let λ be the eigenvalue of the matrix pair (A, B) closest to θ, let z be its B-normalized eigenvector, and let $\psi=\angle(x, z)$. Then

$$
\begin{equation*}
|\sin \psi|=\frac{\|r(x)\|_{B^{-1}}}{d} \quad \text { and } \quad|\theta-\lambda| \leq \frac{\|r(x)\|_{B^{-1}}^{2}}{d} \tag{5}
\end{equation*}
$$

where $d=\min \left|\lambda_{i}-\lambda\right|$ over all $\lambda_{i} \neq \lambda$.

For the assumption that an approximation \hat{z}_{k} of the eigenvector z_{k} has been determined with a relative accuracy ε_{k} and being B-normalized, the approximations \hat{z}_{k} can be expressed as

$$
\begin{equation*}
\hat{z}_{k}=c_{k}{ }^{(k)} z_{k}+\varepsilon_{k} \sum_{\substack{i=1 \\ i \neq k}}^{n} c_{i}^{(k)} z_{i} \text { with }\left\|\sum_{\substack{i=1 \\ i \neq k}}^{n} c_{i}{ }^{(k)} z_{i}\right\|_{B}=1, k=1, \cdots, r-1 \tag{6}
\end{equation*}
$$

Here the coefficients $c_{k}{ }^{(k)}$ satisfy

$$
c_{k}{ }^{(k)^{2}}+\varepsilon_{k}^{2}\left(\sum_{\substack{i=1 \\ i \neq k}}^{n} c_{i}(k)^{2}\right)=c_{k}^{(k)^{2}}+\varepsilon_{k}^{2}=1 \text { and } c_{k}^{(k)} \cong 1-\frac{1}{2} \varepsilon_{k}^{2}
$$

To make the statements below neatly, we define ε and c_{r} as

$$
\begin{equation*}
|\varepsilon|=\max _{1 \leq k \leq r-1}\left|\varepsilon_{k}\right|,\left|c_{r}\right|=\max _{1 \leq k \leq r-1}\left|c_{r}^{(k)}\right| \tag{7}
\end{equation*}
$$

We now show the influence of the approximations $\hat{z}_{k}, k=1, \cdots, r-1$, to the next higher eigenvalue λ_{r}.

THEOREM 3.3. Let $\left(\lambda_{r}, z_{r}\right)$ be the eigenpair of the matrix A_{r} in (4), and let \hat{z}_{k} be the approximations of the eigenvectors z_{k}, for $k=1, \cdots, r-1$, as in (6). And let $\hat{\lambda}_{r}$ be the computed eigenvalue of $\hat{A}_{r}=A+\sum_{k=1}^{r-1} \sigma_{k}\left(B \hat{z}_{k}\right)\left(B \hat{z}_{k}\right)^{T}$ with the same shifts σ_{k} in (4). Let ε and c_{r} be defined as in (7). Then

$$
\begin{equation*}
\left|\hat{\lambda}_{r}-\lambda_{r}\right| \leq \frac{1}{d_{r}} \varepsilon^{2} c_{r}^{2} \sum_{k=1}^{r-1} \sigma_{k}^{2} \tag{8}
\end{equation*}
$$

where $d_{r}=\min _{i \neq r}\left|\hat{\lambda}_{r}-\hat{\lambda}_{i}\right|$ and $\hat{\lambda}_{i}$ s are all eigenvalues computed from \hat{A}_{r}.
Proof. We have

$$
\begin{aligned}
& \hat{A}_{r}=A+\sum_{k=1}^{r-1} \sigma_{k}\left(B \hat{z}_{k}\right)\left(B \hat{z}_{k}\right)^{T} \\
& =A+\sum_{k=1}^{r-1} \sigma_{k}\left(c_{k}{ }^{(k)} B z_{k}+\varepsilon_{k} \sum_{\substack{i=1 \\
i \neq k}}^{n} c_{i}{ }^{(k)} B z_{i}\right)\left(c_{k}{ }^{(k)} B z_{k}+\varepsilon_{k} \sum_{\substack{j=1 \\
j \neq k}}^{n} c_{j}{ }^{(k)} B z_{j}\right)^{T} \\
& =A+\sum_{k=1}^{r-1} \sigma_{k} c_{k}{ }^{(k)^{2}}\left(B z_{k}\right)\left(B z_{k}\right)^{T} \\
& +\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{k}^{(k)}\left[\sum_{\substack{i=1 \\
i \neq k}}^{n} c_{i}(k)\left\{\left(B z_{k}\right)\left(B z_{i}\right)^{T}+\left(B z_{i}\right)\left(B z_{k}\right)^{T}\right\}\right] \\
& +\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k}{ }^{2}\left[\sum_{\substack{i=1 \\
i \neq k}}^{n} \sum_{\substack{j=1 \\
j \neq k}}^{n} c_{i}{ }^{(k)} c_{j}{ }^{(k)}\left(B z_{i}\right)\left(B z_{j}\right)^{T}\right] \\
& =A+\sum_{k=1}^{r-1} \sigma_{k}\left(1-\varepsilon_{k}{ }^{2}\right)\left(B z_{k}\right)\left(B z_{k}\right)^{T} \\
& +\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{k}^{(k)}\left[\sum_{\substack{i=1 \\
i \neq k}}^{n} c_{i}{ }^{(k)}\left\{\left(B z_{k}\right)\left(B z_{i}\right)^{T}+\left(B z_{i}\right)\left(B z_{k}\right)^{T}\right\}\right] \\
& +\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k}{ }^{2}\left[\sum_{\substack{i=1 \\
i \neq k}}^{n} \sum_{\substack{j=1 \\
j \neq k}}^{n} c_{i}{ }^{(k)} c_{j}{ }^{(k)}\left(B z_{i}\right)\left(B z_{j}\right)^{T}\right] \\
& =A_{r}+\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k}\left[\sum_{\substack{i=1 \\
i \neq k}}^{n} c_{i}{ }^{(k)}\left\{\left(B z_{k}\right)\left(B z_{i}\right)^{T}+\left(B z_{i}\right)\left(B z_{k}\right)^{T}\right\}\right]+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Now, we get the Ritz value $\theta_{r}=z_{r}^{T} \hat{A}_{r} z_{r}$ and the residual $r\left(z_{r}\right)=\hat{A}_{r} z_{r}-\theta B z_{r}$ by applying Theorem 3.2 with $A=\hat{A}_{r}$ and $x=z_{r}$. We first consider

$$
\begin{aligned}
\hat{A}_{r} z_{r} & =A_{r} z_{r}+\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k}\left[\sum_{\substack{i=1 \\
i \neq k}}^{n} c_{i}{ }^{(k)}\left\{\left(B z_{k}\right)\left(B z_{i}\right)^{T}+\left(B z_{i}\right)\left(B z_{k}\right)^{T}\right\}\right] z_{r}+O\left(\varepsilon^{2}\right) \\
& =A_{r} z_{r}+\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{r}{ }^{(k)}\left(B z_{k}\right)+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

and get

$$
\begin{aligned}
\theta_{r}=z_{r}^{T} \hat{A}_{r} z_{r} & =z_{r}^{T} A_{r} z_{r}+z_{r}^{T}\left\{\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{r}{ }^{(k)}\left(B z_{k}\right)\right\}+O\left(\varepsilon^{2}\right) \\
& =\lambda_{r}+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
r\left(z_{r}\right) & =\hat{A}_{r} z_{r}-\theta_{r} B z_{r} \\
& =A_{r} z_{r}+\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{r}^{(k)}\left(B z_{k}\right)-\lambda_{r} B z_{r}+O\left(\varepsilon^{2}\right) \\
& =\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{r}{ }^{(k)}\left(B z_{k}\right)+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|r\left(z_{r}\right)\right\|_{B^{-1}}^{2} & =\left\{\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{r}{ }^{(k)}\left(B z_{k}\right)\right\}^{T} B^{-1}\left\{\sum_{k=1}^{r-1} \sigma_{k} \varepsilon_{k} c_{r}{ }^{(k)}\left(B z_{k}\right)\right\} \\
& =\sum_{k=1}^{r-1} \sigma_{k}{ }^{2} \varepsilon_{k}{ }^{2} c_{r}(k)^{2} .
\end{aligned}
$$

Now from (5), it follows that

$$
\left|\hat{\lambda}_{r}-\lambda_{r}\right| \leq \frac{\left\|r\left(z_{r}\right)\right\|_{B^{-1}}^{2}}{d_{r}}=\frac{1}{d_{r}} \sum_{k=1}^{r-1}{\sigma_{k}}^{2} \varepsilon_{k}{ }^{2} c_{r}{ }^{(k)^{2}} \leq \frac{1}{d_{r}} \varepsilon^{2} c_{r}^{2} \sum_{k=1}^{r-1} \sigma_{k}^{2},
$$

where $d_{r}=\min _{i \neq r}\left|\hat{\lambda}_{r}-\hat{\lambda}_{i}\right|$.

In [13] they considered the bounds of $\hat{\lambda}_{k}, k \geq 2$, based only on the \hat{A}_{2} while the bound we obtained in (8) concerns for general updating procedure. Furthermore, we only need to focus on the bound of $\hat{\lambda}_{r}$, which is the smallest eigenvalue of \hat{A}_{r}, rather than the bounds of eigenvalues $\hat{\lambda}_{k}, k>2$, of \hat{A}_{2} as in [13].

References

[1] K. J. Bathe and E. Wilson, Solution methods for eigenvalue problems in structural dynamics, Internat. J. Numer. Methods Engrg., 6(1973), pp. 213-226.
[2] Y. Cho and Y. K. Yong, A multi-mesh, preconditioned conjugate gradient solver for eigenvalue problems in finite element models, Comput. Struct., 58(1996), pp. 575-583.
[3] J. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. 1, Theory, Birkhauser, Boston, 1985.
[4] Y. T. Feng and D. R. J. Owen, Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems, Internat. J. Numer. Methods Engrg., 39(1996), pp. 22092229.
[5] G. Gambolati, G. Pini and F. Sartoretto, An improved iterative optimization technique for the leftmost eigenpairs of large symmetric matrices, J. Comput. Phys., 74(1988), pp. 41-60.
[6] G. Gambolati and M. Putti, A comparison of Lanczos and optimization methods in the partial solution of sparse symmetric eigenproblems, Internat. J. Numer. Methods Engrg., 37(1994), pp. 605-621.
[7] G. Gambolati, F. Sartoretto, and P. Florian, An orthogonal accelerated deflation technique for large symmetric eigenproblems, Comput. Methods Appl. Mech. Engrg., 94(1992), pp. 13-23.
[8] W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, New York, 1985.
[9] D.E. Longine and S.F. McCormick, Simultaneous Rayleigh quotient minimization methods for $A x=\lambda B x$, Linear Algebra Appl., 34(1980), pp. 195-234.
[10] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[11] A. Ruhe, Computation of eigenvalues and eigenvectors, in Sparse Matrix Techniques, V. A. Baker, ed., Springer-Verlag, Berlin(1977), pp. 130-184.
[12] F. Sartoretto, G. Pini and G. Gambolati, Accelerated simultaneous iterations for large finite element eigenproblems, J. Comput. Phys., 81(1989), pp. 53-69.
[13] H. R. Schwarz, Eigenvalue problems and preconditioning, ISNM, 96(1991), pp. 191-208.
[14] H. R. Schwarz, The eigenvalue problem $(A-\lambda B) x=0$ for symmetric matrices of high order, Comput. Methods Appl. Mech. Engrg., 3(1974), pp. 11-28.

Department of Mathematics
Hanyang University, Seoul 133-791, Korea

