• Title/Summary/Keyword: eigenfunctions

Search Result 81, Processing Time 0.028 seconds

On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations

  • Abdel-Gawad, Hamdy I.;Osman, M.S.
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.661-680
    • /
    • 2013
  • The eigenvalue problems arise in the analysis of stability of traveling waves or rest state solutions are currently dealt with, using the Evans function method. In the literature, it had been shown that, use of this method is not straightforward even in very simple examples. Here an extended "variational" method to solve the eigenvalue problem for the higher order dierential equations is suggested. The extended method is matched to the well known variational iteration method. The criteria for validity of the eigenfunctions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

Dynamic response of thin plates on time-varying elastic point supports

  • Foyouzat, Mohammad A.;Estekanchi, Homayoon E.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.431-441
    • /
    • 2017
  • In this article, an analytical-numerical approach is presented in order to determine the dynamic response of thin plates resting on multiple elastic point supports with time-varying stiffness. The proposed method is essentially based on transforming a familiar governing partial differential equation into a new solvable system of linear ordinary differential equations. When dealing with time-invariant stiffness, the solution of this system of equations leads to a symmetric matrix, whose eigenvalues determine the natural frequencies of the point-supported plate. Moreover, this method proves to be applicable for any plate configuration with any type of boundary condition. The results, where possible, are verified upon comparison with available values in the literature, and excellent agreement is achieved.

The Effect of Structural Models(Membrane or Plate) on the Modal Model Method (구조물의 모델링(박막 혹은 평판)이 모드 모델 방법에 미치는 영향)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.714-719
    • /
    • 2000
  • The analysis of structures may be classified into three categories: theoretical, numerical, and experimental approaches. The numerical and experimental methods are very useful when the structures to be analyzed have complicated shapes or geometry because theoretical methods are restricted to simple and special cases. However, the theoretical methods are very important analysis in the viewpoint that they can give basic insight for the structural behavior. Among them the modal model method is widely used because of the powerful propertiy of eigenfunctions(mode shapes), or orthogonality. In this paper, the modal model method was reviewed and studied for various models for structures: string, beam, membrane, and plate. Governing equations and solution methods were compared and a structural-acoustic coupling system was used for an application.

  • PDF

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

ONE-DIMENSIONAL JUMPING PROBLEM INVOLVING p-LAPLACIAN

  • Jung, Tacksun;Choi, Q-Heing
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.683-700
    • /
    • 2018
  • We get one theorem which shows existence of solutions for one-dimensional jumping problem involving p-Laplacian and Dirichlet boundary condition. This theorem is that there exists at least one solution when nonlinearities crossing finite number of eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the p-Laplacian eigenvalue problem when 1 < p < ${\infty}$, variational reduction method and Leray-Schauder degree theory when $2{\leq}$ p < ${\infty}$.

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

SPECTRAL PROPERTIES OF THE NEUMANN-POINCARÉ OPERATOR AND CLOAKING BY ANOMALOUS LOCALIZED RESONANCE: A REVIEW

  • SHOTA FUKUSHIMA;YONG-GWAN JI;HYEONBAE KANG;YOSHIHISA MIYANISHI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.87-108
    • /
    • 2023
  • This is a review paper on recent development on the spectral theory of the Neumann-Poincaré operator. The topics to be covered are convergence rate of eigenvalues of the Neumann-Poincaré operator and surface localization of the single layer potentials of its eigenfunctions. Study on these topics is motivated by their relations with the cloaking by anomalous localized resonance. We review on this topic as well.

Large-Scale Structure of Leading-Edge Separation Bbubble with Local Forcing (국소교란이 가해지는 박리기포의 대형구조)

  • 김유익;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1134-1147
    • /
    • 1995
  • POD (proper orthogonal decomposition) is applied to turbulent leading-edge separation bubble to extract coherent structures. A two-dimensional leading-edge separation bubble is simulated by discrete-vortex method, where a time-dependent source forcing is incorporated. Based on the wealth of numerical data, POD is applied in a range of the forcing amplitude ( $A_{o}$ = 0, 0.5, 1.0 and 1.5) and forcing frequency (0 .leq. $f_{F}$H/ $U_{\infty}$.leq. 0.3). It is demonstrated that the structures of POD have noticeable changes with local forcings. In an effort to investigate the mechanism of decreasing reattachment length, dynamic behaviors of the expansion coefficients and contributions of the eigenfunctions of POD are scrutinized. As the forcing amplitude increases, the large-scale vortex structures are formed near the forcing amplitude increases, the large-scale vortex structures are formed near the separation point and the flow structures become more organized and more regular, accompanying with the reduction of reattachment length. By further inverstigation of POD global entropy, it is seen that the reattachment length is closely linked to the degree of organization of the flow structures.es.s.

Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads

  • Piccardo, Giuseppe;Tubino, Federica
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.681-704
    • /
    • 2012
  • The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a straightforward interpretation of the analytical solution. The dynamic response is expressed through a harmonic function slowly modulated in time, and the maximum dynamic response is identified with the maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions for the time-history of the dynamic response and for its maximum value are provided. Two dynamic factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio between the two non-dimensional parameters. The influence of the involved parameters on the dynamic amplification is discussed within a general framework. The proposed procedure appears effective also in assessing the maximum response of real bridges characterized by numerically-estimated mode shapes, without requiring burdensome step-by-step dynamic analyses.