• Title/Summary/Keyword: earthquake wave

Search Result 503, Processing Time 0.026 seconds

Experiment and Analysis for the Horizontal Vibration Control of Access Floor on Reinforced Concrete Structures (철근 콘크리트 구조물의 Access Floor 수평진동 제어를 위한 실험 및 해석)

  • 변근주;김문겸;송하원;이호범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1997
  • This paper is on the vibration control of access floor on the frames of reinforced structure. In this study, the horizontal anti-vibration system using precise spring damper was developed and modeling and vibration analysis of the RC structure was performed for the control of horizontal vibration coused by machinery and worker's moving. Experiment was done in three cases, no damper at the RC structures, dampers connecting pedestal to pedestal and pedestal to the structure, for the investigation of the effect of the system on disigned RC structure. For each experiment, the occeleration responses on slab and access floor after giving impact wave and external vibration were measured. It was shown that the magnitude of resonance response of the system with dampers are smaller than without damper and the resonance peak also partly moved to low-frequency range. Furthermore. It was shown that the acceleration components of the system with domoers decreased greatly in high-frequency range and the system was very much effective especially for external vibration. In order to verify the anti-vibration effect of the developed system, the vibration analysis was also done for the system by using the finite element modelling. The analysis results was in good agreement with experimental results. Thus, It is concluded that this study is useful for the design of precise anti-vibration system and micro-vibration control of concrete structures.

  • PDF

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.

Evaluation of Site-specific Seismic Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역에 대한 부지 고유의 지진 응답 특성 평가)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo;Kim, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.1-13
    • /
    • 2007
  • In order to evaluate the local site effects at two town fortress areas in Korea where stone parapets were col-lapsed by historical earthquakes, site characteristics were assessed using site investigations such as borehole drillings and seismic tests. Equivalent-linear site response analyses were conducted based on the shear ways velocity ($V_s$) profiles and geotechnical characteristics determined from site investigations. The study sites are categorized as site classes C and B according to the mean $V_s$ to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in the short period range of 0.06 to 0.16 sec, which contains the natural period of fortress wall and stone parapet. From the results of site response analyses in the study areas, for site class C indicating most of site conditions, contrary to site class B, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_a$ and $F_v$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the high amplification in short period range, which represent the site-specific seismic response characteristics. These site-specific response characteristics indicate the potential of resonance in fortress walls during earthquake and furthermore could strongly affect the collapse of parapets resulted from seismic events in historical records.

Evaluation of Site-Specific Seismic Amplification Characteristics in Plains of Seoul Metropolitan Area (서울 평야 지역에 대한 부지 고유의 지진 증폭 특성 평가)

  • Sun, Chang-Guk;Yang, Dae-Sung;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.29-42
    • /
    • 2005
  • Total 350 borehole profiles were selected from the database of borehole logs in Seoul, for the site-specific seismic evaluation at two 4km${\times}$4km plain areas. Equivalent-linear site response analyses for the selected 350 sites were conducted based on shear wave velocity (Vs) Profiles, which were determined from the N-Vs correlation established using borehole seismic testing results in the inland areas of Korea. Most sites were categorized as site classes C and D based on the mean Vs to 30 m in depth (Vs30) ranging from 250 to 550 m/s. The she periods of the plains in Seoul ranging between 0.1 and 0.4 sec were significantly lower than those of the western US, from which the site coefficients in Korea were derived. For plains in Seoul, the site coefficients, Fa's and Fv's specified in the Korean seismic design guide, underestimate the ground motion in short-period (0.1-0.5 sec) band and overestimate the ground motion in mid-period (0.4-2.0 sec) band, respectively, because ol the differences in the geotechnical conditions between Seoul and the western US, although the Fa's in several sites overestimate the motion due to the base Isolation effect resulted from the soft layer in soil deposit.

Study on the Site Classification and Site Coefficients for the Seismic Design Regulations of KBC (KBC 내진설계기준을 위한 지반분류와 지반계수에 대한 연구)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.59-65
    • /
    • 2007
  • Site classification of IBC and KBC is based on the ft-kips unit system and is not friendly for the linear interpolation of the site coefficients due to the implicit relationship between a site class and site coefficients, defining a site class by the range of the soil properties, not by a single soil property. Also, the site class definition of KBC has too wide range of soil properties for each soil class. making the structural engineers difficult to estimate the site coefficients for the diverse soil layers. In this study, a new site classification in SI unit system was proposed for the seismic design codes of KBC etc., and the comparison of the site coefficients of $F_{a}\;and\;F_{v}$ was also performed to investigate the possibility of the linear interpolation of the site coefficients with the proposed new site classification. According to the study results, it was more reasonable for the linear interpolation of the site coefficients to utilize the proposed new site classification considered the Sl unit system and the soil characteristics of the 30m soil layer beneath the shallow embedded foundation, and the linear interpolation of the acceleration coefficients for the design spectrum can be performed more reasonably defining the site coefficients for the representative shear wave velocities of each site class. With the study results, a new site classification, and the linear interpolation permitted acceleration coefficients fer the design spectrum were proposed for the modification of the seismic design regulations of KBC.

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Microseismic Monitoring Using Seismic Mini-Array (소규모 배열식 지진관측소를 이용한 미소지진 관측)

  • Sheen, Dong-Hoon;Cho, Chang Soo;Lee, Hee Il
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • It was introduced a seismic mini-array that could monitor microseismicity efficiently and analyzed seismic data obtained from the mini-array that was operated from December 19, 2012 to January 9, 2013. The mini-array consisted of a six channel data logger, a central 3 components seismometer, and a tripartite array of vertical sensors centered around the 3 components seismometer as an equilateral triangle with about 100 m aperture. All seismometers that had the same instrument response were connected a 6 channel data logger, which was set to record seismograms at a sampling rate of 200 sps. During the three weeks of campaign, a total of 16 microearthquakes were detected. Using time differences of P wave arrivals from the vertical components, S-P time from 3 components seismometers, and back azimuth from the seismic array analysis, it was possible to locate the hypocenter of the microearthquake even with one seismic miniarray. The epicenters of two nearest microearthquakes were a quarry site located 1.3 km from the mini-array. The records of quarry blasting confirmed the our analysis.

Shaking table test on seismic response and failure characteristics of ground fissures site during earthquakes

  • Chao, Zhang;Xuzhi, Nie;Zhongming, Xiong;Yuekui, Pang;Xiaolu, Yuan;Yan, Zhuge;Youjun, Xu
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.307-319
    • /
    • 2023
  • Ground fissures have a huge effect on the integrity of surface structures. In high-intensity ground fissure regions, however, land resource would be wasted and city building and economic development would be limited if the area avoiding principle was used. In view of this challenge, to reveal the seismic response and seismic failure characteristics of ground fissure sites, a shaking table test on model soil based on a 1:15 scale experiment was carried out. In the test, the spatial distribution characteristics of acceleration response and Arias intensity were obtained for a site exposed to earthquakes with different characteristics. Furthermore, the failure characteristics and damage evolution of the model soil were analyzed. The test results indicated that, with the increase in the earthquake acceleration magnitude, the crack width of the ground fissure enlarged from 0 to 5 mm. The soil of the hanging wall was characterized by earlier cracking and a higher abundance of secondary fissures at 45°. Under strong earthquakes, the model soil, especially the soil near the ground fissure, was severely damaged and exhibited reduced stiffness. As a result, its natural frequency also decreased from 11.41 Hz to 8.05 Hz, whereas the damping ratio increased from 4.8% to 9.1%. Due to the existence of ground fissure, the acceleration was amplified to nearly 0.476 m/s2, as high as 2.38 times of the input acceleration magnitude. The maximum of acceleration and Arias intensity appeared at the fissure zone, which decreased from the main fissure toward both sides, showing hanging wall effects. The seismic intensity, duration and frequency spectrum all had certain effects on the seismic response of the ground fissure site, but their influence degrees were different. The seismic response of the site induced by the seismic wave that had richer low-frequency components and longer duration was larger. The discrepancies of seismic response between the hanging wall and the footwall declined obviously when the magnitude of the earthquake acceleration increased. The research results will be propitious to enhancing the utilizing ratio of the limited landing resource, alleviation of property damages and casualties, and provide a good engineering application foreground.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.