DOI QR코드

DOI QR Code

Modeling of Earthquake Ground Motion in a Small-Scale Basin

소규모 분지에서의 지진 지반운동 모델링

  • Kang, Tae-Seob (Department of Earth Environmental Sciences, Pukyong National University)
  • 강태섭 (부경대학교 지구환경과학과)
  • Received : 2012.04.30
  • Accepted : 2012.05.21
  • Published : 2012.05.31

Abstract

Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

평탄한 자유표면을 갖는 소규모 반구형 분지에서 임의의 전단변형 점진원에 대한 3차원 유한차분 모의를 수행하였다. 자유표면 경계조건을 다루기 위한 새로운 방법을 고안하였다. 분지에서 지반운동 응답에 대한 주요한 특징들을 파악하기 위하여 분지특성 변수를 조사하였다. 분지에서 지반운동의 주파수 함량을 분석하기 위하여, 각 주파수에 대한 진폭을 분지 주변 4개의 위치에서 계산하고 서로 비교하였다. 또한 어떤 종류의 파가 이들 각 지점에서의 지반운동 응답에 우세한 역할을 하는지 보기 위하여 입자운동을 분석하였다. 계산 결과, 지진파 에너지가 진원으로부터 먼 쪽의 분지 경계부에서 집중되는 것을 알 수 있었다. 이러한 집중 효과는 주로 직접 S-파와 분지 경계에서 생성된 표면파의 보강간섭으로 인한 것이다. 또한, 분지의 가장 깊은 곳 상부에서의 지반운동 증폭은 얕은 깊이의 분지 경계 부에 비하여 상대적으로 작게 나타났다. 이러한 결과로부터, 상대적으로 단순한 기반암 경계를 갖는 소규모 분지에서의 지반운동 증폭은 분지의 깊이 보다는 진원의 방위 또는 분지 내부로 입사하는 파의 진행방향에 더 많은 관계가 있다는 것을 추정할 수 있다.

Keywords

References

  1. Aki, K., and Richards, P. G., 1980, Quantitative Seismology: Theory and Methods, Vol. I, W. H. Freeman and Co., San Francisco.
  2. Alex, C. M., and Olsen, K. B., 1998, Lens-effect in Santa Monica?, Geophys. Res. Lett., 25, 3441-3444. https://doi.org/10.1029/98GL52668
  3. Boore, D. M., 1972, Finite difference methods for seismic wave propagation in heterogeneous materials, in Methods in Computational Physics, Vol. 11, B. A. Bolt (Editor), Academic Press, New York.
  4. Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, R., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705-708. https://doi.org/10.1190/1.1441945
  5. Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am., 67, 1529-1540.
  6. Frankel, A., 1993, Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault, Bull. Seismol. Soc. Am., 83, 1020-1041.
  7. Gao, S., Liu, H., Davis, P. M., and Knopoff, L., 1996, Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: Evidence for focusing in Santa Monica, Bull. Seismol. Soc. Am., 86, S209-S230.
  8. Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seismol. Soc. Am., 86, 1091-1106.
  9. Graves, R. W., Pitarka, A., and Somerville, P. G., 1998, Ground motion amplification in the Santa Monica area: Effects of shallow basin edge structure, Bull. Seismol. Soc. Am., 88, 1224-1242.
  10. Hartzell, S., Cranswick, E., Frankel, A., Carver, D., and Meremonte, M., 1997, Variability of site response in the Los Angeles urban area, Bull. Seismol. Soc. Am., 87, 1377-1400.
  11. Kang, T. S. and Baag, C. E., 2004a, Finite-difference seisic simulation combining discontinuous grids with locally variable timesteps, Bull. Seismol. Soc. Am., 94, 207-219. https://doi.org/10.1785/0120030080
  12. Kang, T. S., and Baag, C. E., 2004b, An efficient finite-difference method for simulating 3D seismic response of localized basin structures, Bull. Seismol. Soc. Am., 94, 1690-1705. https://doi.org/10.1785/012004016
  13. Kawase, H., 1996, The cause of damage belt in Kobe: "The basin-edge effect", constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves, Seismol. Res. Lett., 67, 25-34.
  14. Lay, T., and Wallace, T. C., 1995, Modern Global Seismology, Academic Press, San Diego.
  15. Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425-1436. https://doi.org/10.1190/1.1442422
  16. Olsen, K. B., and Archuleta, R. J., 1996, Three-dimensional simulation of earthquakes on the Los Angeles fault system, Bull. Seismol. Soc. Am., 86, 575-596.
  17. Olsen, K. B., Archuleta, R. J., and Matarese, J. R., 1995a, Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault, Science, 270, 1628-1632. https://doi.org/10.1126/science.270.5242.1628
  18. Olsen, K. B., Pechmann, J. C., and Schuster, G. T., 1995b, Simulation of 3D elastic wave propagation in the Salt Lake basin, Bull. Seismol. Soc. Am., 85, 1688-1710.
  19. Pitarka, A., and Irikura, K., 1996, Modeling 3D surface topography by finite-difference method: Kobe-JMA station site, Japan, case study, Geophys. Res. Lett., 23, 2729-2732. https://doi.org/10.1029/96GL02493
  20. Pitarka, A., Irikura, K., Iwata, T., and Sekiguchi, H., 1998, Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe) earthquake, Bull. Seismol. Soc. Am., 88, 428-440.
  21. Randall, C. J., 1989, Absorbing boundary condition for the elastic wave equation: Velocity-stress formulation, Geophysics, 54, 1141-1152. https://doi.org/10.1190/1.1442749
  22. Randall, C. J., Scheibner, D. J., and Wu, P. T., 1991, Multiple borehole acoustic waveforms: Synthetic logs with beds and borehole washouts, Geophysics, 56, 1757-1769. https://doi.org/10.1190/1.1442988
  23. Robertsson, J. O. A., 1996, A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography, Geophysics, 61, 1921-1934. https://doi.org/10.1190/1.1444107
  24. Rovelli, A., Scognamiglio, L., Marra, F., and Caserta, A., 2001, Edge-diffracted 1-sec surface waves observed in a small-size intramountain basin (Colfiorito, central Italy), Bull. Seismol. Soc. Am., 91, 1851-1866. https://doi.org/10.1785/0120000301
  25. Somerville, P., 1993, Engineering applications of strong ground motion simulation, In New Horizons in Strong Motion: Seismic Studies and Engineering Practice, F. Lund (Editor), Tectonophysics, 218, 195-219. https://doi.org/10.1016/0040-1951(93)90268-O
  26. Stacey, R., 1988, Improved transparent boundary formulations for the elastic-wave equation, Bull. Seismol. Soc. Am., 78, 2089-2097.
  27. Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 49, 1933-1957. https://doi.org/10.1190/1.1441605
  28. Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889-901. https://doi.org/10.1190/1.1442147
  29. Zahradnik, J., Moczo, P., and Hron, F., 1993, Testing four elastic finite-difference schemes for behavior at discontinuities, Bull. Seismol. Soc. Am., 83, 107-129.