Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania

Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과

  • Claprood, Maxime (Centre for Environmental and Geotechnical Applications of Surface Waves (CEGAS), School of Geosciences, Monash University) ;
  • Asten, Michael W. (Centre for Environmental and Geotechnical Applications of Surface Waves (CEGAS), School of Geosciences, Monash University)
  • Published : 2009.02.28

Abstract

The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.

Tamar 열곡은 Tatmania의 Launceston 시를 관통하고 있고, Bass 해협의 지진 활동은 이 도시의 건물들에 피해를 입혔다. 두께가 0 m에서 250 m의 범위로 급격하게 변화하는 연약 퇴적물로 채워진 Tamar 열곡은 Launceston 시 내부와 열곡 위의 지표면 진동을 증폭시키면서 2차원적인 공진 양상을 유도하는 것으로 생각되고 있다. 공간적 평균 일관성 (SPAC), 주파수-파수 (FK), 수평과 수직 스펙트럼 비율을 이용하는 상시 진동 탐사법이 Tamar 열곡에 미치는 영향을 확인하기 위하여 여러 기법을 혼합하여 사용하였다. 일곱 개의 지점에서 수동 탄성파 탐사가 수행되었고, 횡파 속도의 심도 단면을 추정하기 위하여 SPAC을 분석하였으며, 대략 125 m 심도의 퇴적층 속도 단면의 정밀도를 향상시키기 위하여 HVSR을 결합하였다. 그 결과, 퇴적층의 두께가 Launceston 시에서 전체적으로 변화가 심하게 나타남을 확인하였다. 최상부층은 매우 연약한 제 4기의 충적층으로 구성되어 있으며, 횡파 속도는 50 m/s에서 125 m/s의 범위를 나타낸다. Tamar 열곡의 0 m에서 250 m 심도를 채우고 있는 제 3기의 퇴적층의 횡파 속도는 400 m/s에서 750 m/s로 변화한다. GUN과 KPK 측점해서 SPAC을 이용하여 획득한 결과는 FK 분석으로 해석된 분산 곡선과 잘 일치하였다. FK 해석은 SPAC 보다 좁은 주파수 대역에 한정되어서, 더 낮은 주파수 대역에서 횡파 속도가 높게 추정된 것으로 보인다. 층서 모델로 가정하여 측정된 HVSR은 SPAC에 의한 결과와 비교하였고, 횡파 느리기 단면에 추가적인 제한조건을 제공하였다. SPAC과 HVSR 분석을 결합한 결과에서는 GUN 측점의 지질구조가 층서 구조로 가정할 수 있음을 확인하였고, KPK 측점에서는 Tamar 열곡을 가로지르는 2차원적 공진 양상이 존재함을 확인하였다

Keywords

References

  1. Aki, K., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors: Bulletin Earthquake Research Institute, 35, 415–456
  2. Arai, H., and Tokimatsu, K., 2004, S-wave velocity profiling by inversionof microtremor H/V spectrum: Bulletin of the Seismological Society of America, 94, 53–63. doi: 10.1785/0120030028
  3. Arai, H., and Tokimatsu, K., 2005, S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum: Bulletin of the Seismological Society of America, 95, 1766–1778. doi: 10.1785/0120040243
  4. Asten, M. W., 1976, The use of microseisms in geophysical exploration: Ph.D. thesis, Macquarie University
  5. Asten, M. W., 2003, Lessons from alternative array design used for highfrequencymicrotremor array studies: in Earthquake Risk Mitigation, Proceedings of the 2003 Australian Earthquake and Engineering Society Conference: in Wilson, J.L., Lam, N.K., Gibson, G., and Butler, B. (eds.), Paper No. 14, Melbourne, Australia
  6. Asten, M. W., 2005, An assessment of information on the shear-velocity profile at Coyote Creek, San Jose, from SPAC processing of microtremor array data: in Asten, M.W. and Boore, D.M. (eds.), Blind comparisons of shear-wave velocities at closely spaced sites in San Jose, California: U.S. Geological Survey Open-File Report, 2005–1169
  7. Asten, M. W., 2006, On bias and noise in passive seismic data from finitecircular array data processed using SPAC methods: Geophysics, 71, V153–V162. doi: 10.1190/1.2345054
  8. Asten, M., Dhu, T., and Lam, N., 2004, Optimised array design for microtremor array studies applied to site classification; comparison of results with SCPT logs: in 13th World Conference on Earthquake Engineering, Paper No. 2903, Vancouver, Canada, August 1–6, 2004
  9. Asten, M. W., and Henstridge, J. D., 1984, Array estimators and the use ofmicroseisms for reconnaissance of sedimentary basins: Geophysics, 49, 1828–1837. doi: 10.1190/1.1441596
  10. Asten, M.W., Lam, N., Gibson, G., and Wilson, J., 2002, Microtremor survey design optimised for application to site amplification and resonance modelling: in Total Risk Management in the Privatised Era: in Griffith, M., Love, D., McBean, P., McDougall, A., and Butler B. (eds.), Paper 7, Proceedings of Conference, Australian Earthquake Engineering Soc., Adelaide
  11. Bard, P.-Y., and Bouchon, M., 1985, The two-dimensional resonance ofsediment-filled valleys: Bulletin of the Seismological Society of America, 75, 519–541
  12. Capon, J., 1969, High resolution frequency-wavenumber analysis: in Proceeding of the IEEE, 57, No. 8, 1408–1418, August, 1969
  13. Claprood, M., and Asten, M. W., 2007, Use of SPAC, HVSR and strong ground motion analysis for site hazard study over the 2D Tamar valley in Launceston, Tasmania: in Proceedings of the Australian Earthquake Engineering Society Conference, Wollongong, Australia, Nov. 23–25, 2007
  14. Field, E. H., 1996, Spectral amplification in a sediment-filled valley exhibitingclear basin-edge-induced waves: Bulletin of the Seismological Society of America, 86, 991–1005
  15. Hartzell, S., Carver, D., Williams, R. A., Harmsen, S., and Zerva, A., 2003, Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array: Bulletin of the Seismological Society of America, 93, 443–464. doi: 10.1785/0120020080
  16. Henstridge, J. D., 1979, A signal processing method for circular arrays: Geophysics, 44, 179–184. doi: 10.1190/1.1440959
  17. Hermann, R., 2002, Computer programs in seismology: An overview of synthetic seismogram computation. Saint-Louis University, USA, version 3.30, 2002 edition
  18. Horike, M., 1985, Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas: Journal of Physics of the Earth, 33, 59–96
  19. Komatitsch, D., Liu, Q., Tromp, J., Süss, P., Stidham, C., and Shaw, J. H.,2004, Simulations of ground motion in the Los Angeles basin based upon the spectral-element method: Bulletin of the Seismological Society of America, 94, 187–206. doi: 10.1785/0120030077
  20. Kudo, K., Kanno, T., Okada, H., Özel, O., Erdik, M., Sasatani, T., Higashi, S.,Takahashi, M., and Yoshida, K., 2002, Site-specific issues for strong motions during the Kocaeli, Turkey, earthquake of 17 August 1999, as inferred from array observations of microtremors and aftershocks: Bulletin of the Seismological Society of America, 92, 448–465. doi: 10.1785/0120000812
  21. Lachet, C., and Bard, P.-Y., 1994, Numerical and theoretical investigations onthe possibilities and limitations of Nakamura’s technique: Journal of Physics of the Earth, 42, 377–397
  22. Lacoss, R. T., Kelly, E. J., and Toksöz, M. N., 1969, Estimation of seismicnoise structure using arrays: Geophysics, 34, 21–38. doi: 10.1190/1.1439995
  23. Leaman, D., 1994, Assessment of gravity survey City of Launceston: Technical Report for Launceston City Corporation Seismic Zonation Study, Leaman Geophysics, Hobart, Tasmania, Australia
  24. Michael-Leiba, M., 1995, Microtremor survey and seismic microzonation Launceston, Tasmania: Technical report for Launceston City Council, Australian Geological Survey, Canberra, ACT, Australia
  25. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface: Quarterly Reports of Railway Technical Research Institute, 30, 25–33
  26. Nogoshi, M., and Igarashi, T., 1971, On the amplitude characteristics of microtremor, Part II: Journal of the Seismological Society of Japan, 24, 26–40
  27. Ohori, M., Nobata, A., and Wakamatsu, K., 2002, A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays: Bulletin of the Seismological Society of America, 92, 2323–2332. doi: 10.1785/0119980109
  28. Okada, H., 2003, The Microtremor Survey Method: Society of ExplorationGeophysicists of Japan, Translated by Koya Suto, Geophysical Monograph Series No. 12, Society of Exploration Geophysicists
  29. Olsen, K. B., Nigbor, O. R., and Konno, T., 2000, 3D viscoelastic wave propagation in the Upper Borrego valley, California, constrained by borehole and surface data: Bulletin of the Seismological Society of America, 90, 134–150. doi: 10.1785/0119990052
  30. Roberts, J., and Asten, M. W., 2004, Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method: Exploration Geophysics, 35, 14–18. doi: 10.1071/EG04014
  31. Roberts, J., and Asten, M. W., 2007, Further investigation over Quaternary silts using the spatial autocorrelation (SPAC) and horizontal to vertical spectral ratio (HVSR) microtremor methods: Exploration Geophysics, 38, 175–183. doi: 10.1071/EG07017
  32. Roten, D., Fäh, D., Cornou, C., and Giardini, D., 2006, Two-dimensionalresonances in Alpine valleys identified from ambient vibration wavefields: Geophysical Journal International, 165, 889–905. doi: 10.1111/j.1365-246X.2006.02935.x
  33. Roten, D., Fäh, D., Olsen, K. B., and Giardini, D., 2008, A comparison of observed and simulated site response in the Rhône valley: GeophysicalJournal International, 173, 958–978. doi: 10.1111/j.1365-246X. 2008.03774.x
  34. Satoh, T., Kawase, H., Iwata, T., Higashi, S., Sato, T., Irikura, K., and Huang, H.-C., 2001, S-wave velocity structure of the Taichung Basin, Taiwan, estimated from array and single-station records of microtremors: Bulletin of the Seismological Society of America, 91, 1267–1282. doi: 10.1785/0120000706
  35. Scherbaum, F., Hinzen, K.-G., and Ohrnberger, M., 2003, Determination ofshallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations: Geophysical Journal International, 152, 597–612. doi: 10.1046/j.1365-246X.2003.01856.x
  36. Steimen, S., Fäh, D., Kind, F., Schmid, C., and Giardini, D., 2003, Identifying2D resonance in microtremor wave fields: Bulletin of the Seismological Society of America, 93, 583–599. doi: 10.1785/0120000264
  37. Stephenson, W. R., 2003, Factors bounding prograde Rayleigh-wave particlemotion in a soft-soil layer: In Proceedings of the 2003 Pacific Conference on Earthquake Engineering, Paper No. 56, Christchurch, New-Zealand, Feb. 13–15, 2003
  38. Tokimatsu, K., 1997, Geotechnical site characterisation using surface waves: Earthquake Geotechnical Engineering, Ed Ishihara, Balkema, Rotterdam, 1333–1368
  39. Toksöz, M. N., 1964, Microseisms and an attempted application to exploration: Geophysics, 29, 154–177. doi: 10.1190/1.1439344
  40. Toksöz, M. N., and Lacoss, R. T., 1968, Microseisms: Mode structure andsources: The Sciences, 159, 872–873
  41. Uebayashi, H., 2003, Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors: Bulletin of the Seismological Society of America, 93, 570–582. doi: 10.1785/0120020137