• Title/Summary/Keyword: earthquake loading

Search Result 762, Processing Time 0.029 seconds

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.

A Study on the Analysis of the Fracture Behavior of Pallet Racks due to Earthquake Load (지진하중으로 인한 팔레트 랙의 파괴 거동 분석에 관한 연구)

  • Kim, Chunggil;Heo, Gwanghee;Jeong, Seonghoon;Kim, Sun Tae;Seo, Youngdeuk;Ko, Byeongchan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.157-164
    • /
    • 2023
  • This study aims to analyze the damage and destruction behavior of pallet racks due to external forces through shaking table test. Pallet racks is a general storage racks type consisting of column, beam, and brace to resist an external force. To analyze the safety of the pallet racks due to external force, a shaking table test was conducted to investigate the pallet racks behavior due to external force while increasing the seismic load targeting the pallet racks used in the existing logistics storage facility. As a result of the shaking table test, it was confirmed that the torsion of the pallet racks damaged the connection parts of some members located on the 1st and 2nd levels, thereby destroying the loading equipment.

Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model (UBCSAND모델을 이용한 사면의 동적거동해석)

  • Park Sung-Sik;Kim Young-Su;Kim Hee-Joong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • A numerical procedure is presented fur evaluating seismic liquefaction on sloping ground sites. The procedure uses a fully coupled dynamic effective stress analysis with a plastic constitutive model called UBCSAND. The model was first calibrated against laboratory element behavior. This involved cyclic simple shear tests performed on loose sand with and without initial static shear stress. The numerical procedure is then verified by predicting a centrifuge test with a slope performed on loose Fraser River sand. The predicted excess pore pressures, accelerations and displacements are compared with the measurements. The results are shown to be in good agreement. The shear stress reversal patterns depend on static and cyclic shear stress levels and are shown to play a key role in evaluating liquefaction response in sloping ground sites. The sand near the slope has low effective confining stress and dilates more. When no stress reversals occur, the sand behaves in a stiffer manner that curtails the accumulated downslope displacements. The numerical procedure using UBCSAND can serve as a guide for design of new soil structures or retrofit of existing ones.

Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior (지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석)

  • Lee, Joon-Kyu;Kim, Byung-Chul;Jeong, Sang-Seom;Song, Sung-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.31-40
    • /
    • 2008
  • This study presents the assessment of pseudostatic approach for obtaining the internal response of Single Column/Shaft subjected to earthquake loading. In numerical procedure, various lateral load transfer characteristics (p-y curve and Bi-linear curve) were used to model the nonlinear behavior of soil reactions including soil-pile interaction. The analysis using nonlinear soil model could estimate the seismic performance of soil-pile system, despite its relative simplicity. It was found that lateral behavior of single column/shaft obtained from the response displacement method was larger than those by seismic intensity method. To investigate the effects of soil-pile rigidity and pile head condition on the internal pile response, parametric studies were carried out for various soil models. The results from numerical analysis showed that lateral deflection was decreased with fixed condition of pile head and decreasing the soil-pile rigidity. The seismic analysis using Bi-linear model of JRA could reasonably predict the lateral behavior of Single Column/Shaft.

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Experimental study on replaceable precast concrete beam-column connections

  • Seung-Ho Choi;Sang-Hoon Lee;Jae-Hyun Kim;Inwook Heo;Hoseong Jeong;Kang Su Kim
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.49-58
    • /
    • 2024
  • The purpose of this study was to develop a system capable of restoring the seismic performance of a precast concrete (PC) connection damaged by an earthquake. The developed PC connection consists of a top-and-seat angle, post-tensioning (PT) tendons, and U-shaped steel. The PC beam can be replaced by cutting the PT tendons in the event of damage. In addition, the seismic performance of the developed PC beam-column connection was evaluated experimentally. A PC beam-column connection specimen was fabricated, and a quasistatic cyclic loading test was conducted to a maximum drift ratio of 2.3%. Subsequently, the PC beam was replaced by a new PC beam, and the repaired PC connection was loaded to a maximum drift ratio of 5.1%. The structural performance of the repaired PC connection was then compared with that of the original PC connection. The difference in the load at the drift ratio of 2.3% between the original and the repaired PC specimens was only 0.2%. The residual drift ratio in the repaired PC specimen did not exceed 1.0% at the 2.0 % drift ratio cycles, which satisfies the life safety performance level specified in ACI 374.2R-13. When the developed PC connection system is used, structural performance can be restored by rapidly replacing the damaged elements.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Comparison of the Applicability of Bayesian Filters for System Identification of Sudden Structural Damage (급격한 구조손상탐지를 위한 베이지안 필터 적용가능성 비교 검토 연구)

  • Se-Hyeok Lee;Minkyu Kim;Sang-ri Yi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.283-293
    • /
    • 2024
  • In this study, advanced unscented Kalman filter (UKF) and particle filter (PF) implementations are introduced and applied to perform system identification (SI) for sudden structural damage induced by seismic loading. These two methods are then compared to validate their applicability to SI tasks. For this validation, the Bouc- Wen model is used to simulate the nonlinear shear-building response, and an adaptive rule (i.e., an adaptive tracking method) is applied to the two filter methods to improve their tracking performance during sudden changes in system properties. When the original UKF and PF are applied to an earthquake scenario, both methods fail to estimate the damage initiation time and post-damage parameter values. After applying the adaptive tracking method, it is found for both methods that although the occurrence time is identified, the estimation of the damage state is still not accurate. To improve the accuracy, an adjusted adaptive tracking method is applied, and the two methods then derive accurate estimates. Finally, when considering the computation time, UKF is promoted as a better choice for practical applications, provided that a proper adaptive tracking method is implemented.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.