DOI QR코드

DOI QR Code

Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model

UBCSAND모델을 이용한 사면의 동적거동해석

  • Published : 2006.04.01

Abstract

A numerical procedure is presented fur evaluating seismic liquefaction on sloping ground sites. The procedure uses a fully coupled dynamic effective stress analysis with a plastic constitutive model called UBCSAND. The model was first calibrated against laboratory element behavior. This involved cyclic simple shear tests performed on loose sand with and without initial static shear stress. The numerical procedure is then verified by predicting a centrifuge test with a slope performed on loose Fraser River sand. The predicted excess pore pressures, accelerations and displacements are compared with the measurements. The results are shown to be in good agreement. The shear stress reversal patterns depend on static and cyclic shear stress levels and are shown to play a key role in evaluating liquefaction response in sloping ground sites. The sand near the slope has low effective confining stress and dilates more. When no stress reversals occur, the sand behaves in a stiffer manner that curtails the accumulated downslope displacements. The numerical procedure using UBCSAND can serve as a guide for design of new soil structures or retrofit of existing ones.

본 논문에서는 유효응력모델을 이용하여 포화된 사면의 동적거동에 관한 연구를 수행하였다. 수치해석에는 저자가 개발한 연성 유효응력모델인 UBSSAND모델을 이용하였으며, 이 모델은 초기전단응력이 수평면에 작용하는 경우와 작용하지 않는 경우를 포함한 반복 직접단순전단시험 자료를 이용하여 검증하였다. 검증된 모델은 느슨한 Fraser River 모래로 성형된 사면을 가진 원심모형모델의 동적거동을 예측하였다. 예측된 과잉간극수압, 가속도 및 변위를 계측치와 서로 비교하였으며, 예측치와 계측치는 비교적 서로 잘 일치하였다. 전단응력도의 응력전환형태는 초기전단응력과 반복전단응력의 크기에 따라 달라지며, 이는 지진시 포화된 사면의 안정해석에 아주 중요한 역할을 하고 있음을 알 수 있었다. 전단응력도의 응력전환이 발생하지 않을 경우에 사면근처의 모래는 낮은 유효응력 구속압과 그에 따른 팽창성으로(부의 과잉간극수압발생) 유효응력이 증가하여, 동적하중 하의 사면의 변위를 저지하였다. 이와 같은 유효응력모델은 액상화를 고려한 지반구조물의 내진해석에 유용하게 사용될 수 있다.

Keywords

References

  1. 박성식, 김영수, Byme, P.M., 김대만 (2005), '액상화해석을 위한 간단한 구성모델', 한국 지반공학회 논문집, 제21권, 제8호, pp.27-35
  2. 박성식, 김영수 (2006), 유효응력모델을 이용한 동적 원심모형실험의 수치해석', 한국 지반공학회 논문집, 제22권, 제1호, pp.25-34
  3. Byme, P.M., Park, S.-S., Beaty, M, Sharp, M, Gonzalez, L. and Abdoun, T. (2004), Numerical modeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41(2), 193-211 https://doi.org/10.1139/t03-088
  4. C-CORE (2004), Earthquake induced damage mitigation from soil liquefaction. Data report- centrifuge tests CT2. Contract report prepared for the University of British Columbia, C-CORE Report R-04-027-145, July 2004
  5. Finn, W.D.L. and Vaid, Y.P. (1977), Liquefaction potential from drained constant volume cyclic simple shear tests. In Proceedings of the Sixth World Conference on Earthquake Engineering, Vol.3, pp.2157-2162
  6. Finn, W.D.L., Vaid, Y.P., and Bhatia, S.K (1978), Constant volume cyclic simple shear testing. In Proceedings of the Second International Conference on Microzonation for safer construction- research and application, Vol.2, pp.839-851
  7. Hyodo, M, Murata, H., Yasufuku, N. and Fujii, T. (1991), Undrained cyclic shear strength and residual shear strain of saturated sand by cyclic triaxial tests, Soils and Foundations, 31 (3): 60-76
  8. Ishibashi, I., Kawamura, M. and Bhatia, S.K. (1985), Effects of initial shear on cyclic behavior of sand, Journal of Geotechnical Engineering, III (12): 1395-1410
  9. Itasca (2000), FLAC, version 4.0. Itasca Consulting Group Inc., Minneapolis
  10. Lee, K.L. and Seed, H.B. (1967), Drained strength characteristics of sands. Journal of the Soil Mechanics and Foundations Division, 93 (SM6): 117-141
  11. Rahhal, M.E. and Lefebvre, G. (2000), Understanding the effect of a static driving shear stress on the liquefaction resistance of medium dense granular soils, Soil Dynamics and Earthquake Engineering, 20: 397-404 https://doi.org/10.1016/S0267-7261(00)00089-0
  12. Skempton, A.W. (1986), Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation, Geotechnique 36, NO.3: 425-447 https://doi.org/10.1680/geot.1986.36.3.425
  13. Sriskandakumar, S. (2004), Cyclic loading response of Fraser River sand for validation of numerical models simulating centrifuge tests. M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada
  14. Vaid, Y.P. and Chern, J.C. (1983), Effect of static shear on resistance to liquefaction. Soils and Foundations, 23 (1): 47-60 https://doi.org/10.3208/sandf1972.23.47
  15. Vaid, Y.P. and Finn, W.D.L. (1979), Static shear and liquefaction potential, Journal of Geotechnical Engineering, 105 (10): 1233-1246
  16. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R, Finn, W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S., Marcuson III, W.F., Martin, G.R, Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. (2001), Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironrnental Engineering, 127(10): 817-833 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)