Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.5.761

Three dimensional dynamic soil interaction analysis in time domain through the soft computing  

Han, Bin (School of Civil and Resource Engineering, University of Science and Technology Beijing)
Sun, J.B. (School of Design and the Built Environment, Curtin University)
Heidarzadeh, Milad (Department of Civil Engineering, Tabriz Branch, Islamic Azad University)
Jam, M.M. Nemati (Department of Civil Engineering, K.N. Toosi University of Technology)
Benjeddou, O. (Prince Sattam bin Abdulaziz University, College of Engineering, Department of Civil Engineering)
Publication Information
Steel and Composite Structures / v.41, no.5, 2021 , pp. 761-773 More about this Journal
Abstract
This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.
Keywords
3D dimension; ANN; soil-interaction; time domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jahannoosh, M., Nowdeh, S.A., Naderipour, A., Kamyab, H., Davoudkhani, I.F. and Klemes, J.J. (2021), "New hybrid metaheuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability", J. Cleaner Production, 278, 123406. https://doi.org/10.1016/j.jclepro.2020.123406.   DOI
2 Chen, S., Zhang, J., Meng, F. and Wang, D. (2021b)., "A markov chain position prediction model based on multidimensional correction", Complexity, 2021. https://doi.org/10.1155/2021/6677132.   DOI
3 Jahanbakhti, E., Fanaie, N. and Rezaeian, A. (2017), "Experimental investigation of panel zone in rigid beam to box column connection", J. Constr. Steel Res., 137, 180-191. https://doi.org/10.1016/j.jcsr.2017.06.025.   DOI
4 Sun, Y., Zhang, J., Li, G., Ma, G., Huang, Y., Sun, J., Wang, Y. and Nener, B. (2019c), "Determination of Young's modulus of jet grouted coalcretes using an intelligent model", Eng. Geology, 252, 43-53, https://doi.org/10.1016/j.enggeo.2019.02.021.   DOI
5 Yousefi, A.M., Hosseini, M. and Fanaie, N. (2014), "Vulnerability assessment of progressive collapse of steel moment resistant frames", Trends in Appl. Sci. Res., 9(8), 450.   DOI
6 Maslahati Roudi, A., Chelliapan, S., Wan Mohtar, W.H.M. and Kamyab, H. (2018), "Prediction and optimization of the fenton process for the treatment of landfill leachate using an artificial neural network", Water, 10(5), 595. https://doi.org/10.3390/w10050595.   DOI
7 Najarkolaie, K.F., Mohammadi, M. and Fanaie, N. (2017), "Realistic behavior of infilled steel frames in seismic events: experimental and analytical study", Bull. Earthq. Eng., 15(12), 5365-5392. https://doi.org/10.1007/s10518-017-0173-z.   DOI
8 Ouchi, M., Nakamura, S., Osterberg, T., Hallberg, S. and Lwin, M. (2003), "Applications of self-compacting concrete in Japan, Europe and the United States", Kochi University of Technology, Kochi, Japan.
9 Sun, Y., Li, G., Zhang, J. and Qian, D. (2019b), "Stability control for the rheological roadway by a novel high-efficiency jet grouting technique in deep underground coal mines", Sustainability, 11(22), 6494. https://doi.org/10.3390/su11226494.   DOI
10 Wang, L., Wu, C., Gu, X., Liu, H., Mei, G. and Zhang, W. (2020), "Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines", Bull. Eng. Geology Environ., 79, 2763-2775. https://doi.org/10.1007/s10064-020-01730-0.   DOI
11 Yavari, S., Kamyab, H., Asadpour, R., Yavari, S., Sapari, N.B., Baloo, L., Abd Manan, T.S.B., Ashokkumar, V. and Chelliapan, S. (2021b), "The fate of imazapyr herbicide in the soil amended with carbon sorbents", Biomass Conversion and Biorefinery, 1-9. https://doi.org/10.1007/s13399-021-01587-7.   DOI
12 Chen, Q., Tao, Y., Zhang, Q. and Qi, C.C. (2022), "The rheological, mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide", Chemosphere, 286, 131630. https://doi.org/10.1016/j.chemosphere.2021.131630.   DOI
13 Asadolahi, S.M. and Fanaie, N. (2020), "Performance of self-centering steel moment frame considering stress relaxation in prestressed cables", Adv. Struct. Eng., 1369433219900940. https://doi.org/10.1177%2F1369433219900940.   DOI
14 Brinkgreve, R., Swolfs, W., Engin, E., Waterman, D., Chesaru, A., Bonnier, P. and Galavi, V. (2011), "PLAXIS 2D Reference manual", Delft University of Technology and PLAXIS bv The Netherlands.
15 Chen, Q.S., Sun, S.Y., Liu, Y.K., Qi, C.C., Zhou, H.B. and Zhang, Q.L. (2021a), "Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill", Int. J. Miner. Metallurgy Mater., 28(9), 1440-1452. https://doi.org/10.1007/s12613-021-2274-6.   DOI
16 Dravinski, M. (1982), "Scattering of SH waves by subsurface topography", J. Eng. Mech. Division, 108(1), 1-17. https://doi.org/10.1061/JMCEA3.0002788.   DOI
17 Mishra, A.R., Mardani, A., Rani, P., Kamyab, H. and Alrasheedi, M. (2021). "A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector", Energy, 237, 121500. https://doi.org/10.1016/j.energy.2021.121500.   DOI
18 Zhang, W., Zhang, R., Wang, W., Zhang, F. and Chee Goh, A.T. (2019), "A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays", Tunn. Undergr. Sp. Tech., 84, 461-471. https://doi.org/10.1016/j.tust.2018.11.046.   DOI
19 Mathur, R.P. (1989), A new hybrid method for three-dimensional dynamic soil-structure interaction, The University of Arizona.
20 Meng, F., Wang, D., Yang, P. and Xie, G. (2019), "Application of sum of squares method in nonlinear H∞ control for satellite attitude maneuvers", Complexity, 2019. https://doi.org/10.1155/2019/5124108.   DOI
21 Moghadam, H., Fanaei, N. and Motazedian, D. (2010), "Estimation of stress drop for some large shallow earthquakes using stochastic point source and finite fault modeling".
22 Moghaddam, H., Fanaie, N. and Hamzehloo, H. (2009), "Uniform hazard response spectra and ground motions for Tabriz", Scientia Iranica, 16(3).
23 Mossessian, T. and Dravinski, M. (1987), "Application of a hybrid method for scattering of P, SV, and Rayleigh waves by near-surface irregularities", Bull. Seismol. Soc. Am., 77(5), 1784-1803. https://doi.org/10.1785/BSSA0770051784.
24 Zhao, Y., Yan, Q., Yang, Z., Yu, X. and Jia, B. (2020), "A novel artificial bee colony algorithm for structural damage detection", Adv. Civil Eng., 2020, 1-21. https://doi.org/10.1155/2020/3743089.   DOI
25 Xu, J., Wu, Z., Chen, H., Shao,L., Zhou, X. and Wang, S. (2021), "Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology", KSCE J. Civil Eng., https://doi.org/10.1007/s12205-021-2034-1.   DOI
26 Yang, Y., Hou, C., Lang, Y., Sakamoto, T., He, Y. and Xiang, W. (2019), "Omnidirectional motion classification with monostatic radar system using micro-Doppler signatures", IEEE T. Geosci. Remote Sens., 58(5), 3574-3587. https://doi.org/10.1109/TGRS.2019.2958178.   DOI
27 Yavari, S., Asadpour, R., Kamyab, H., Yavari, S., Kutty, S.R.M., Baloo, L., Abd Manan, T.S.B., Chelliapan, S. and Sidik, A.B.C. (2021a), "Efficiency of carbon sorbents in mitigating polar herbicides leaching from tropical soil", Clean Technol. Environ. Policy, 1-10. https://doi.org/10.1007/s10098-021-02113-z.   DOI
28 Zhao, C., Zhong, S., Zhang, X., Zhong, Q. and Shi, K. (2020a), "Novel results on nonfragile sampled-data exponential synchronization for delayed complex dynamical networks", Int. J. Robust Nonlinear Control, 30(10), 4022-4042. https://doi.org/10.1002/rnc.4975.   DOI
29 Zhao, C., Zhong, S., Zhong, Q. and Shi, K. (2020b). "Synchronization of Markovian complex networks with input mode delay and Markovian directed communication via distributed dynamic event-triggered control", Nonlinear Anal. Hybrid Syst., 36, 100883. https://doi.org/10.1016/j.nahs.2020.100883.   DOI
30 Zienkiewicz, O., Kelly, D. and Bettess, P. (1977), "The coupling of the finite element method and boundary solution procedures", Int. J. Numer. Method. Eng., 11(2), 355-375. https://doi.org/10.1002/nme.1620110210   DOI
31 Naderipour, A., Abdul-Malek, Z., Davoodkhani, I.F., Kamyab, H. and Ali, R.R. (2021), "Load-frequency control in an islanded microgrid PV/WT/FC/ESS using an optimal self-tuning fractional-order fuzzy controller", Environ. Sci. Pollut. Res., 1-12. https://doi.org/10.1007/s11356-021-14799-1.   DOI
32 Nguyen, H.T. and Kim, S.E. (2009), "Finite element modeling of push-out tests for large stud shear connectors", J. Constr. Steel Res., 65(10-11), 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010.   DOI
33 Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Frontiers, 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.   DOI
34 Yue, C.S., Peng, B., Tian, W., Lu, G.H., Qiu, G.B. and Zhang, M. (2019), "Complete stabilization of severely As-contaminated soil by a simple H2O2 pre-oxidation method combined with non-toxic TMT-15 and FeCl3.6H2O", Int. J. Minerals, Metallurgy Mater., 26(9), 1105-1112. https://doi.org/10.1007/s12613-019-1819-4.   DOI
35 Zhang, K., Jia, C., Song, Y., Jiang, S., Jiang, Z., Wen, M., Huang, Y., Liu, X., Jiang, T. and Peng, J. (2020), "Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region", Fuel, 263, 115978. https://doi.org/10.1016/j.fuel.2019.115978.   DOI
36 Zhang, R., Wu, C., Goh, A.T.C., Bohlke, T. and Zhang, W. (2021), "Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning", Geosci. Frontiers, 12(1), 365-373. https://doi.org/10.1016/j.gsf.2020.03.003.   DOI
37 Zhang, X., Wegner, J. and Haddow, J. (1999), "Three-dimensional dynamic soil-structure interaction analysis in the time domain", Earthq. Eng. Struct. D., 28(12), 1501-1524. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12%3C1501::AID-EQE878%3E3.0.CO;2-8.   DOI
38 Paronesso, A. and Wolf, J.P. (1995), "Global lumped-parameter model with physical representation for unbounded medium", Earthq. Eng. Struct. Dynam., 24(5), 637-654. https://doi.org/10.1002/eqe.4290240503.   DOI
39 Nilashi, M., Rupani, P.F., Rupani, M.M., Kamyab, H., Shao, W., Ahmadi, H., Rashid, T.A. and Aljojo, N. (2019), "Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach", J. Cleaner Production, 240, 118162. https://doi.org/10.1016/j.jclepro.2019.118162.   DOI
40 Oreta, A.W. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554).   DOI
41 Qi, C. and Fourie, A. (2019), "Cemented paste backfill for mineral tailings management: Review and future perspectives", Miner. Eng., 144, 106025. https://doi.org/10.1016/j.mineng.2019.106025.   DOI
42 Rouhanifar, S., Afrazi, M., Fakhimi, A. and Yazdani, M. (2020), "Strength and deformation behaviour of sand-rubber mixture", Int. J. Geotech. Eng., 1-15. https://doi.org/10.1080/19386362.2020.1812193.   DOI
43 Sarkar, J. and Das, D. (2019), "Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks", Int. J. Miner. Metallurgy Mater., 26(10), 1322-1328. https://doi.org/10.1007/s12613-019-1835-4.   DOI
44 Sun, Y., Li, G. and Zhang, J. (2020b), "Investigation on jet grouting support strategy for controlling time-dependent deformation in the roadway", Energy Sci. Eng., 8(6), 2151-2158. https://doi.org/10.1002/ese3.654.   DOI
45 Shah, A., Wong, K. and Datta, S. (1982), "Diffraction of plane SH waves in a half-space", Earthq. Eng. Struct. D., 10(4), 519-528. https://doi.org/10.1002/eqe.4290100402.   DOI
46 Sun, Y., Li, G., Basarir, H., Karrech, A. and Azadi, M.R. (2019a), "Laboratory evaluation of shear strength properties for cement-based grouted coal mass", Arabian J. Geosci., 12(22), 1-11. https://doi.org/10.1007/s12517-019-4908-9.   DOI
47 Sun, Y., Li, G. and Zhang, J. (2020a), "Developing hybrid machine learning models for estimating the unconfined compressive strength of jet grouting composite: a comparative study", Appl. Sci., 10(5), 1612. https://doi.org/10.3390/app10051612.   DOI
48 Sun, Y., Li, G.,Zhang, J. and Xu, J. (2020c), "Failure mechanisms of rheological coal roadway", Sustainability, 12(7), 2885. https://doi.org/10.3390/su12072885.   DOI
49 Sun, Y., Li, G., Zhang, N., Chang, Q., Xu, J. and Zhang, J. (2021), "Development of ensemble learning models to evaluate the strength of coal-grout materials", Int. J. Mining Sci. Technol., 31(2), 153-162. https://doi.org/10.1016/j.ijmst.2020.09.002.   DOI
50 Tam, C., Tong, T.K. and Tse, S.L. (2002), "Artificial neural networks model for predicting excavator productivity", Eng. Constr. Architect. Manage., https://doi.org/10.1108/eb021238.   DOI
51 Touhei, T. and Ohmachi, T. (1993), "A FE-BE method for dynamic analysis of dam-foundation-reservoir systems in the time domain", Earthq. Eng. Struct. D., 22(3), 195-209. https://doi.org/10.1002/eqe.4290220303.   DOI
52 Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. D., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203.   DOI
53 Xie, W., Zhang, R., Zeng, D., Shi, K. and Zhong, S. (2020), "Strictly dissipative stabilization of multiple-memory Markov jump systems with general transition rates: A novel event-triggered control strategy", Int. J. Robust Nonlinear Control, 30(5), 1956-1978. https://doi.org/10.1002/rnc.4856.   DOI
54 von Estorff, O. and Kausel, E. (1989), "Coupling of boundary and finite elements for soil-structure interaction problems", Earthq. Eng. Struct. D., 18(7), 1065-1075. https://doi.org/10.1002/eqe.4290180711.   DOI
55 Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H. and Gao, L. (2020), "Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method", Acta Geotechnica, 15(11), 3135-3150. https://doi.org/10.1007/s11440-020-00962-4.   DOI
56 Wolf, J.P. (1987), Soil-structure-interaction analysis in time domain. Structural mechanics in reactor technology.
57 Wolf, J.P. and Song, C. (1996), Finite-element modelling of unbounded media, Wiley Chichester.
58 Wong, H. (1982), "Effect of surface topography on the diffraction of P, SV, and Rayleigh waves", Bull. Seismol. Soc. Am., 72(4), 1167-1183. https://doi.org/10.1785/BSSA0720041167.
59 Fanaie, N., Kazerani, S. and Soroushnia, S. (2017a), "Numerical study of slotted web drilled flange moment frame connection", Int. J. Numer. Method. Civil Eng., 1(3), 16-23. http://dx.doi.org/10.29252/nmce.1.3.16   DOI
60 Ebrahimi, F. and Hosseini, S.H.S. (2021), "Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: an analytical study", Eng. with Comput., 37(2), 1219-1230. https://doi.org/10.1007/s00366-019-00879-x.   DOI
61 Feng, S., Zuo, C., Zhang, L., Yin, W. and Chen, Q. (2021), "Generalized framework for non-sinusoidal fringe analysis using deep learning", Photonics Res., 9(6), 1084-1098. https://doi.org/10.1364/PRJ.420944.   DOI
62 Ghanbari-Ghazijahani, T., Nabati, A., Azandariani, M.G. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin-Wall. Struct., 149, 106614. https://doi.org/10.1016/j.tws.2020.106614.   DOI
63 Hu, B., Wu, Y., Wang, H., Tang, Y. and Wang, C. (2021), "Risk mitigation for rockfall hazards in steeply dipping coal seam: a case study in Xinjiang, northwestern China", Geomatics, Nat. Hazard. Risk, 12(1), 988-1014. https://doi.org/10.1080/19475705.2021.1909147.   DOI
64 Jena, S.K., Sahu, J., Padhy, G., Mohanty, S. and Dash, A. (2020), "Chlorination roasting-coupled water leaching process for potash recovery from waste mica scrap using dry marble sludge powder and sodium chloride", Int. J. Miner. Metallurgy Mater., 27(9), 1203-1215. https://doi.org/10.1007/s12613-020-1994-3.   DOI
65 Karimi, H., Rahmani, R., Othman, M.F., Zohoori, B., Mahrami, M., Kamyab, H. and Hosseini, S.E. (2016), "An analytical approach to calculate the charge density of biofunctionalized graphene layer enhanced by artificial neural networks", Plasmonics, 11(1), 95-102. https://doi.org/10.1007/s11468-015-9998-y.   DOI
66 Zhao, C., Liu, X., Zhong, S., Shi, K., Liao, D. and Zhong, Q. (2021), "Secure consensus of multi-agent systems with redundant signal and communication interference via distributed dynamic event-triggered control", ISA Transactions, 112, 89-98. https://doi.org/10.1016/j.isatra.2020.11.030.   DOI
67 Goudarzi, A., Ghassemieh, M., Fanaie, N., Laefer, D.F. and Baei, M. (2016), "Axial load effects on flush end-plate moment connections", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(3), 199-210. https://doi.org/10.1680/jstbu.15.00042.   DOI
68 Elham, K. and Hesam, K. (2016), "Investigating the relationship between soil properties and infestation population of causal agent of soybean charcoal rot (Macrophomina phaseolina)", Academia J. Agricultural Res., 4(6), 363-373.
69 Fanaie, N. and Tahriri, M. (2017b), "Stability and stiffness analysis of a steel frame with an oblique beam using method of least work", J. Constr. Steel Res., 137, 342-357. https://doi.org/10.1016/j.jcsr.2017.06.032.   DOI
70 Feng, P., Chang, H., Liu, X., Ye, S., Shu, X. and Ran, Q. (2020), "The significance of dispersion of nano-SiO2 on early age hydration of cement pastes", Mater. Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320.   DOI
71 Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279).   DOI
72 Kobayashi, S. (1983), "Some problems of the boundary integral equation method in elastodynamics", Bound. Elem., 775-784.
73 Luo, J., Li, M., Liu, X., Tian, W., Zhong, S. and Shi, K. (2020), "Stabilization analysis for fuzzy systems with a switched sampled-data control", J. Franklin Inst., 357(1), 39-58. https://doi.org/10.1016/j.jfranklin.2019.09.029   DOI
74 Zhou, W., Lv, Y., Lei, J. and Yu, L. (2019), "Global and local-contrast guides content-aware fusion for RGB-D saliency prediction", IEEE T. Syst. Man Cy. Syst., https://doi.org/10.1109/TSMC.2019.2957386.   DOI
75 Kazerani, S., Fanaie, N. and Soroushnia, S. (2017), "Seismic behavior of drilled beam section in moment connections", Int. J. Numer. Method. Civil Eng., 1(4), 1-6. http://dx.doi.org/10.29252/nmce.1.4.1.   DOI
76 Khudhair, A.B., Hadibarata, T., Yusoff, A.R.M., Teh, Z.C., Adnan, L.A. and Kamyab, H. (2015), "Pyrene metabolism by new species isolated from soil Rhizoctonia zeae SOL3", Water, Air, & Soil Pollution, 226(6), 1-9. https://doi.org/10.1007/s11270-015-2432-4.   DOI
77 Kordestani, H., Zhang, C., Masri, S.F. and Shadabfar, M. (2021), "An empirical time-domain trend line-based bridge signal decomposing algorithm using Savitzky-Golay filter", Struct. Control Health Monit., 28(7), e2750. https://doi.org/10.1002/stc.2750.   DOI
78 Kumar, A., Sharma, T., Mulla, S.I., Kamyab, H., Pant, D. and Sharma, S. (2019), "Let's protect our earth: Environmental challenges and implications", Microbes and Enzymes in Soil Health and Bioremediation, 1-10. https://doi.org/10.1007/978-981-13-9117-0_1   DOI
79 Li, G., Sun, Y. and Qi, C. (2021), "Machine learning-based constitutive models for cement-grouted coal specimens under shearing", Int. J. Min. Sci. Technol., https://doi.org/10.1016/j.ijmst.2021.08.005.   DOI
80 Liu, D., Lian, M.J., Lu, C.W. and Zhang, W. (2020), "Effect of the lenticles on moisture migration in capillary zone of tailings dam", Int. J. Miner. Metallurgy Mater., 27(8), 1036-1045. https://doi.org/10.1007/s12613-020-1963-x.   DOI