DOI QR코드

DOI QR Code

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs

폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과

  • 이나현 (연세대학교 토목공학과) ;
  • 김성배 (연세대학교 토목공학과) ;
  • 김장호 (연세대학교 사회환경시스템공학부) ;
  • 조윤구 (현대건설(주) 기술연구소 재료팀)
  • Received : 2009.07.24
  • Accepted : 2009.08.13
  • Published : 2009.09.30

Abstract

In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.

최근, 테러 및 전쟁과 관련된 폭발사고가 빈번히 발생하고 있으며, 특히 도심지에서는 이러한 폭발사고로 인해 인명피해 뿐 아니라 주요 시설물에도 큰 손상이 가해져 제2차, 3차의 피해가 발생하게 된다. 폭발사고에 대하여 인명 및 시설물을 안전하게 보호하기 위해서는 기본적으로 구조물에 가해지는 폭발하중 효과에 대한 이해가 필요하다. 폭발하중은 매우 빠른 시간 내에 콘크리트 구조물에 큰 압력으로 작용하는 하중이므로 변형률 속도와 구조물의 국부적인 손상을 고려하여 동적응답을 평가해야 한다. 일반적으로, 콘크리트는 다른 건설재료에 비해 상대적으로 높은 폭발저항성을 가진 재료이지만, 일반강도 콘크리트는 충격 및 폭발하중에 대하여 충분한 저항성능을 가지지 않는다. 그러므로 방호설계에서는 고에너지 흡수력과 높은 파괴저항성을 지니는 새로운 재료의 개발이 필요하다. 본 논문에서는 최근 활발하게 연구 중인 초고강도 콘크리트(UHSC)와 Reactive Powder Concrete(RPC)에 대한 방폭성능을 평가하고자 한다. UHSC와 RPC는 강도 및 성능향상, 부재의 치수 및 중량 감소, 내진저항성 향상과 같은 장점들로 인해 초고층건물 및 초장대교량에서 사용되어지고 있다. 또한 UHSC와 RPC는 9.11테러와 같은 테러 및 충격하중에 의한 사회주요시설물의 방호설계에 적용할 수 있다. 그러므로 본 연구에서는 폭발하중에 대한 UHSC 및 RPC 구조물의 거동을 파악하기 위하여 $1.0m{\times}1.0m{\times}150mm$의 슬래브 구조물 시편을 제작하여 폭발실험을 수행하였으며, 폭발파의 특성 뿐만 아니라 최대 및 잔류 변위와 철근과 콘크리트 표면에서 변형률을 측정하여 구조물의 거동을 분석하였다. 또한 손상 및 파괴모드를 각 시편별로 측정하였다. 본 실험을 통해 UHSC 및 RPC가 일반강도콘크리트에 비해 폭발저항성이 높은 것으로 분석되었다.

Keywords

References

  1. 김장호(2009) 초고강도 콘크리트를 적용한 콘크리트 구조물의 폭발 저항성능에 대한 실험적 평가, 현대건설기술연구소 보고서.
  2. 서관세(2005) 방호공학, 청문각.
  3. Akers, S., Weed, R., Rickman, D., and Danielson, K. (2005) Numerical Simulations of Explosive Wall Breaching, In IEEE Proceedings of the Users Group Conference (DOD-UGC'05), Nashville, TN.
  4. ASCE Committee on Dynamic effect of the Structural Division (1985) Design of Structures to Resist Nuclear Weapons effect, American Society of Civil Engineers, Manuals and Reports on Engineering Practice-No. 42.
  5. ASC E. (1999) Structural Design for Physical Security: State of the Practice Report, Task Committee on Physical Security, American Society of Civil Engineers, New York.
  6. Baker, W.E. (1973) Explosions in Air, Wilfred Baker Engineering, San Antonio.
  7. Cavill, B., Rebentrost, M., and Perry, V. (2006) An ultra-high performance material for resistance to blasts and impacts, 1st Specialty Conference on Disaster Mitigation, Calgary, Alberta, Canada, DM-003-1.
  8. Criswell, M.E. (1972) Design and Testing of a Blast-Resistant Reinforced Concrete Slab System, Technical Report N-72-10, U.S. Army Engineer Waterways Experiment Station Weapons Effects Labortory, Vicksburg, Mississippi.
  9. Harbel, K. and Gauvreau, P. (2008) RespOnse Of Ultra-high Performance Fiber Reinforced Concrete (UHPFRC) to impact and static loading, Cement and Concrete Composites, Vol. 30, pp. 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001
  10. Hyde, D.W. (1992) Fundamental of Protective Design for Conventional Weapons, CONWEP (Conventional Weapons Effects), TM5-8511-1, United States Army Waterway Experiment Station, Vicksburg, Miss.
  11. Krauthammer, T. (2007) Modern Protective Structures, CRC Press.
  12. Mendis, P. and Ngo, T. (2003) Vulnerability assessment of concrete tall buildings subjected to extreme loading conditions, Proceedings of the CIB-CTBUH International Conference on Tall Building, Kuala Lumpur, Malaysia.
  13. Mosalam, K.M. and Mosallam, A.S. (2001) Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites, Composite Part B : engineering, Vol. 32, pp. 623-636. https://doi.org/10.1016/S1359-8368(01)00044-0
  14. Ngo, T.D., Mendis, P.A., Teo, D., and Kusuma, G. (2003) Behavior of high-strength concrete columns subjected to blast loading, Proceeding of International Conference on Advances in Structures(ASSCCA03), Sydeny, pp. 1057-1062.
  15. Pedro, F.S. and Binggeng, L. (2007) Improving the blast resistance capacity of rc slabs with innovative composite materials, Composites Part B:roving thing, Vol. 38, pp. 523-534. https://doi.org/10.1016/j.compositesb.2006.06.015
  16. Razaqpur, A.G., Tolba, A., and Contestabile, E. (2007) Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates, Composite Part B : engineering, Vol. 38, pp. 535-546. https://doi.org/10.1016/j.compositesb.2006.06.016
  17. Zineddin, M. and Krauthammer, T. (2007) Dynamic response and behavior of reinforced concrete slabs under impact loading, International Journal of Impact Engineering, Vol. 34, pp. 1517-1534. https://doi.org/10.1016/j.ijimpeng.2006.10.012