• Title/Summary/Keyword: earth science class model

Search Result 48, Processing Time 0.024 seconds

Exploration of the Strategy in Constructing Visualization Used by Pre-service Elementary School Teachers in Making Science Video Clip for Flipped Learning - Focusing on Earth Science - (Flipped Learning을 위해 제작한 과학 학습 동영상에서 초등예비교사들이 사용한 시각화 구성 전략 탐색 - 지구 영역을 중심으로 -)

  • Ko, Min Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.2
    • /
    • pp.231-245
    • /
    • 2015
  • Flipped learning can be used as an innovative teaching method in science education. This study analyzes video clip produced by pre-service elementary school teachers for flipped learning and explore strategies to organize effective visualization. The pre-service elementary school teachers focused on providing information on macroscopic natural phenomenon using concrete case selection strategy for earth science class. They used marker and spatial transformation elements effectively, but their efforts to link the elements to the experience of students were not sufficient. In addition, it was very rare to put the contents into simplified drawing or provide extreme cases to enhance the imagery of students. In addition, it is necessary to provide specific case of multi-modal and link the material to the experience of students closely through familiar cases or analogical model to establish an effective visual teaching material. It may also be needed to present simplified drawing for enhancing imagery and provide extreme cases to make students have an opportunity to infer a new situation.

Awareness of Pre-Service Elementary Teachers' on Science Teaching-Learning Lesson Plan (초등예비교사의 과학과 교수·학습 과정안 작성에 대한 인식)

  • Yong-Seob, Lee;Sun-Sik, Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.3
    • /
    • pp.335-344
    • /
    • 2022
  • This study was conducted for 4 weeks on the preparation of the science teaching/learning course plan for 109 students in 4 classes of the 2nd year intensive course at B University of Education. Pre-service elementary teachers attended a two-week field training practice after listening to a lecture on how to write a science teaching and learning course plan. Pre-service elementary teachers tried to find out about the selection of materials and the degree of connection between the course plan and the class to prepare the science teaching/learning course plan. The researcher completed the questionnaire by reviewing and deliberation on the questionnaire questions together with 4 pre-service elementary teachers. The questionnaire related to the writing of the science teaching and learning course plan consists of 8 questions. Preferred reference materials when writing the course plan, the level of interest in learning, the success or failure of the science course plan and class, the science preferred model, the evaluation method in unit time, and the science teaching and learning One's own efforts to write the course plan, the contents of this course are the science faculty. It is composed of the preparation of the learning process plan and how helpful it is to the class. The results of this study are as follows. First, it was found that elementary school pre-service elementary teachers preferred teacher guidance the most when drafting science teaching and learning curriculum plans. Second, it is recognized that the development stage is very important in the teaching and learning stage of the science department. Third, Pre-service elementary teachers believe that the science and teaching and learning process plan has a high correlation with the success of the class. Fourth, it was said that the student's level, the teacher's ability, and the appropriate lesson plan had the most influence on the class. Fifth, it was found that pre-service elementary teachers prefer the inquiry learning class model. Sixth, it was found that reports and activity papers were preferred for evaluation in 40-minute classes. Seventh, it was stated that the teaching and learning process plan is highly related to the class, so it will be studied and studied diligently. Eighth, the method of writing a science teaching and learning course plan based on the instructional design principle is interpreted as very beneficial.

Suggestion of the Scientific Argumentation PCK Developmental Model for Preservice Earth Science Teachers through an Instructional Design Program Using Argumentation Structures (논증구조 수업설계 프로그램을 통한 예비 지구과학 교사의 과학논증 PCK 발달 모델 제안)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • In this study, after applying the argument structure class design program for 20 preservice earth science teachers, we conducted individual in-depth interviews, analyzed the data, and derived a scientific argumentation PCK development model. The scientific argumentation PCK development model consists of three dimensions: Scientific argumentation PCK, PCK ecosystem, and reflective practice. Scientific argumentation PCK is demonstrated in the process of designing or executing classes using argumentation structures as an instructional reasoning tool. PCK ecosystem, consisting of the existing conventional PCK components, is a dimension surrounding the scientific argumentation PCK, and these two dimensions develop by interacting with each other. Reflective practice regulates each dimension and develops it in various ways by mediating the two dimensions of the scientific argumentation PCK and the PCK ecosystem. The conclusions drawn based on the results are as follows: First, preservice science teachers can demonstrate scientific argumentation PCK in the process of design and implementation of lessons using argumentation structures as a pedagogical reasoning tool. Second, it is necessary to develop the PCK for pedagogical reasoning tools such as scientific argumentation PCK in advance for the development of science teachers' PCK, since the scientific argumentation PCK can develop various components of the PCK ecosystem. Finally, it is necessary to use scientific argumentation PCK to support the preservice teacher's reflective practice, seeing that the scientific argumentation PCK promotes the development of PCK ecosystem components by inducing reflective practice.

The Effect of Cooperative Learning on Middle School Girls' Science Preferences - Applying the STAD Model in the Unit of Crustal Deformation - (협동 학습이 중학교 여학생들의 과학 선호도에 미치는 효과 - 지각 변동 단원에 STAD 모델의 적용 -)

  • Cho, Kyu-Seong;Lee, Gwang-Ho;Yang, Su-Mi
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.279-288
    • /
    • 2006
  • We incorporated cooperative learning focusing on the 'Crustal Deformation' in five classes of second grade students, at an all-girls' middle school of Gimje city. The groups of cooperative learning were composed of four members of students each, according to the heterogeneous level. We conducted a pretest on the students' preference before incorporating the cooperative learning. After ten weeks of cooperative school work, the students took a post test with the same questions as the pretest. The result of this method greatly impacted the change on the students' scientific preference. It means that the students showed a positive change in their awareness of and participation in science classes, compared to before. However it is difficult to distinguish the differences in their scientific attitude on the recognition about scientists and habits which make them think scientifically. This resulted from the short period of ten weeks which is not sufficient to carry out the study strategy effectively. Surveys of the students on cooperative learning indicates that the middle level students prefer this method unlike the higher or lower level students. we are convinced that they can learn from the students of higher level and are able to help the lower level with the interaction through cooperative learning. According to the result of the survey, the method has some weaknesses; it arouses the high noise levels and consequent disturbance due to verbal interaction and of conflicts due to disagreements when they discuss the process. On the contrary, advantages are developing the students's interest in science class, helping them to learn, creating positive participation in class, and fostering mutual collaboration with other students through cooperative learning.

Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models (HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할)

  • Kim, Hyungwoo;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Kim, Jinsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.913-924
    • /
    • 2022
  • In this paper, we presented a database construction of undersea images for the Habitats of Ecklonia cava and Sargassum and conducted an experiment for semantic segmentation using state-of-the-art (SOTA) models such as High Resolution Network-Object Contextual Representation (HRNet-OCR) and Shifted Windows-L (Swin-L). The result showed that our segmentation models were superior to the existing experiments in terms of the 29% increased mean intersection over union (mIOU). Swin-L model produced better performance for every class. In particular, the information of the Ecklonia cava class that had small data were also appropriately extracted by Swin-L model. Target objects and the backgrounds were well distinguished owing to the Transformer backbone better than the legacy models. A bigger database under construction will ensure more accuracy improvement and can be utilized as deep learning database for undersea images.

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

Development and Application of the Scientific Inquiry-based STEAM Education Program about Earthquakes (지진에 대한 과학 탐구 기반의 STEAM 교육 프로그램 개발과 적용)

  • Lee, Hyundong;Bae, Taeyoun;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.476-488
    • /
    • 2016
  • The purposes of this study were to develop a scientific inquiry-based STEAM education program and to investigate its effect on changing middle school students' self-efficacy in science, job awareness, and attitudes toward STEM. A scientific inquiry-based STEAM program was developed with the theme of 'earthquakes', using the ADBA model, which was taking up the total of six class periods. The final program, which had been revised and completed after being pre-tested with middle school students, was implemented to 105 third-graders of middle school in a metropolitan city. One sample pre-post paired t-test before and after applying the program to the same group was conducted, and its effectiveness was analyzed in terms of self-efficacy in science, job awareness, attitudes toward science, technology, engineering and mathematics. Results showed that the STEAM program on the theme of 'earthquakes' demonstrated its effect on improving the students' of self-efficacy in science subject and their awareness of science-related jobs. Furthermore, this program indicated a statistical significance in improving middle school students' attitudes, awareness, and abilities, values, and continuing interest towards science, technology, engineering, and mathematics. Therefore, we suggest that this scientific inquiry based STEAM program be used to help students to improve their scientific investigation skills as well as their creative and integrated thinking abilities in schools.

Development of a Program for Topophilia Geological Fieldwork Based on Science Field Study Area in Youngdong, Chungcheongbuk-do (충북 영동 지역의 과학학습장을 활용한 토포필리아 야외지질학습 프로그램 개발)

  • Yoon, Ma-Byong;Nam, Kye-Soo;Baek, Je-Eun;Bong, Phil-Hun;Kim, Yu-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.1
    • /
    • pp.76-89
    • /
    • 2017
  • The purpose of this study is to develop a science field study area using Geumgang(Geum River), fossil origins and various geological resources in Youngdong area of Chungcheongbuk-do as educational resources; and utilize them to develop an education program to cultivate earth science and topophilia. The Youngdong sedimentary basin (Cretaceous period) has a well-developed outcrop along the Geumgang and it is therefore easy to find various geological structures, plant fossils, and dinosaur fossils. Also, it has a distinct sedimentary structure, such as mud cracks, ripple marks and cross-bedding. Science field study area(6 observation sites) were developed based on school curriculum, textbook analysis, and professional earth science education panel discussion to create a convergence education program. The result of validating the developed program showed that all the items were satisfactory ($CVR{\geq}0.88$) in the test categories. The science field study teaching-learning model was applied to actual classes. The evaluation result for class satisfaction was positive, scoring Rickert scale 4.18. The result of observation about the outdoor classroom process in the science field study area revealed that students were able to form a new image of the beautiful scenery of the Geumgang. Also, the students could gain a new understanding, concept and value of various geological objects (sandy beach, stepping-stones, dinosaur footprint fossils, sedimentary formation), which naturally allowed them to form topophilia.

The Effect of Engineering Design Based Ocean Clean Up Lesson on STEAM Attitude and Creative Engineering Problem Solving Propensity (공학설계기반 오션클린업(Ocean Clean-up) 수업이 STEAM태도와 창의공학적 문제해결성향에 미치는 효과)

  • DongYoung Lee;Hyojin Yi;Younkyeong Nam
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • The purpose of this study was to investigate the effects of engineering design-based ocean cleanup classes on STEAM attitudes and creative engineering problem-solving dispositions. Furthermore, during this process, we tried to determine interesting points that students encountered in engineering design-based classes. For this study, a science class with six lessons based on engineering design was developed and reviewed by a professor who majored in engineering design, along with five engineering design experts with a master's degree or higher. The subject of the class was selected as the design and implementation of scientific and engineering measures to reduce marine pollution based on the method implemented in an actual Ocean Clean-up Project. The engineering design process utilized the engineering design model presented by NGSS (2013), and was configured to experience redesign through the optimization process. To verify effectiveness, the STEAM attitude questionnaire developed by Park et al. (2019) and the creative engineering problemsolving propensity test tool developed by Kang and Nam (2016) were used. A pre and post t-test was used for statistical analysis for the effectiveness test. In addition, the contents of interesting points experienced by the learners were transcribed after receiving descriptive responses, and were analyzed and visualized through degree centrality analysis. Results confirmed that engineering design in science classes had a positive effect on both STEAM attitude and creative engineering problem-solving disposition (p< .05). In addition, as a result of unstructured data analysis, science and engineering knowledge, engineering experience, and cooperation and collaboration appeared as factors in which learners were interested in learning, confirming that engineering experience was the main factor.

Development of Convergence Education Program for Elementary School Gifted Education Based on Mathematics and Science (초등학교 영재교육을 위한 수학·과학 중심의 융합교육 프로그램 개발)

  • Ryu, Sung-Rim;Lee, Jong-Hak;Yoon, Ma-Byong;Kim, Hak-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.217-228
    • /
    • 2018
  • The purpose of this study is to develop STEAM program for gifted education by combining educational contents of humanities, arts, engineering, technology, and design into various subjects, focusing on mathematics-science curriculum of elementary school. The achievement standards and curriculum contents of elementary mathematics-science curriculum were analyzed while considering 2015 revised national curriculum. And then, a 16 class-hour convergence education program consisting of 3-hour block time was developed by applying the STEAM model with 4 steps. The validity of the program developed through this process was verified, and four educational experts evaluate whether the program can be applied to the elementary school. Based on the evaluation results, the convergence education program was finalized. As a result of implementing the gifted education program for mathematics-science, students achieved the objectives and values of convergence education such as creative design, self-directed participation, cooperative learning, and interest in class activities (game, making). If this convergence education program is applied to regular class, creative experiential class, or class for gifted children, students can promote their scientific creativity, artistic sensitivity, design sence, and so on.