• Title/Summary/Keyword: e-nos

Search Result 564, Processing Time 0.025 seconds

Anti-Oxidative and Anti-Inflammatory Activities of Carpinus pubescens Burkill Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Carpinus pubescens Burkill 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.117-123
    • /
    • 2016
  • In this study, to evaluate the anti-oxidative and anti-inflammatory effects of Carpinus pubescens Burkill ethanol extract (CPEE), we performed the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reactive oxygen species (ROS) inhibition, and nitric oxide (NO) scavenging assays and an analysis of the related protein expressions. CPEE showed high DPPH radical scavenging activity and effectively increased ROS inhibition activity dose-dependently. Furthermore, CPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 and its upstream transcription factor, nuclear factor-E2-related factor 2, in RAW 264.7 cells. CPEE was associated with a reduction in NO production, which was induced by lipopolysaccharide treatment in a dose-dependent manner. The expression of inducible nitric oxide synthase (iNOS), an upstream regulator of NO production, was also inhibited. Taken together, these results suggest that CPEE has anti-oxidative and anti-inflammatory activities and could be useful as a potential anti-oxidant and antiinflammatory agent.

Antioxidant and Anti-inflammatory Activities of Butanol Extract of Melaleuca leucadendron L.

  • Surh, Jeong-Hee;Yun, Jung-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Melaleuca leucadendron L. has been used as a tranquilizing, sedating, evil-dispelling and pain-relieving agent. We examined the effects of M. leucadendron L. extracts on oxidative stress and inflammation. M. leucadendron L. was extracted with methanol (MeOH) and then fractionated with chloroform ($CHCl_3$) and butanol (BuOH). Antioxidant activity of the MeOH extract and BuOH fraction were higher than that of both ${\alpha}$-tocopherol and butyrated hydroxytoluene (BHT). Total phenol content in the extracts of M. leucadendron L., especially the BuOH fraction, well correlated with the antioxidant activity. The anti-inflammatory activity of BuOH extracts were investigated by lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. The BuOH fraction significantly inhibited LPS-induced NO and $PGE_2$ production. Furthermore, BuOH extract of M. leucadendron L. inhibited the expression of COX-2 and iNOS protein without an appreciable cytotoxic effect on RAW264.7 cells. The extract of M. leucadendron L. also suppressed the phosphorylation of inhibitor ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$) and its degradation associated with nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation. Furthermore, BuOH fraction inhibited LPS-induced NF-${\kappa}B$ transcriptional activity in a dose-dependent manner. These results suggested that M. leucadendron L. could be useful as a natural antioxidant and anti-inflammatory resource.

AMP-activated protein kinase: implications on ischemic diseases

  • Ahn, Yong-Joo;Kim, Hwe-Won;Lim, Hee-Jin;Lee, Max;Kang, Yu-Hyun;Moon, Sang-Jun;Kim, Hyeon-Soo;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.489-495
    • /
    • 2012
  • Ischemia is a blockage of blood supply due to an embolism or a hemorrhage in a blood vessel. When an organ cannot receive oxygenated blood and can therefore no longer replenish its blood supply due to ischemia, stresses, such as the disruption of blood glucose homeostasis, hypoglycemia and hypoxia, activate the AMPK complex. LKB1 and $CaMKK{\beta}$ are essential activators of the AMPK signaling pathway. AMPK triggers proangiogenic effects through the eNOS protein in tissues with ischemic conditions, where cells are vulnerable to apoptosis, autophagy and necrosis. The AMPK complex acts to restore blood glucose levels and ATP levels back to homeostasis. This review will discuss AMPK, as well as its key activators (LKB1 and $CaMKK{\beta}$), as a central energy regulator and evaluate the upstream and downstream regulating pathways of AMPK. We will also discuss how we can control this important enzyme in ischemic conditions to prevent harmful effects in patients with vascular damage.

Anti-inflammatory Effects of the Methanol Extracts of Phlox subulata on LPS-induced RAW264.7 Macrophages and BV2 Microglia (꽃잔디 메탄올 추출물의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Kim, Kwan-Woo;Li, Jing;Lee, Hwan;Lee, Dong-Sung;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.291-298
    • /
    • 2019
  • Phlox subulata is a perennial herbaceous flower and is a member of the Polemoniaceae family. This plant is known to resist to various stresses including salt, drought, heat, and cold stresses. In this investigation, we evaluated the ant-inflammatory effect of the methanolic extract of P.subulata(PSM) on lipopolysaccharide(LPS)-induced RAW264.7 macrophages and BV2 microglia. PSM reduced the production of nitric oxide(NO) in LPS-stimulated both RAW264.7 and BV2 cells, but did not affect to the production of prostaglandin E2(PGE2). It inhibited the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 in both cells. In addition, PSM suppressed the production of pro-inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by PSM. Thus, these results suggested that P.subulata can be a candidate material to treat inflammatory diseases.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Effect of Perillae Folium Extract on Regulation of Type 1 Allergic Response in RBL-2H3 Cells (자소엽(紫蘇葉) 에탄올 추출물이 RBL-2H3 비만세포에서 제 1형 알레르기 반응 조절에 미치는 효과)

  • Gok, Su-Yeong;Yu, Sun-Ae;Lee, Seung-Yeon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.36-45
    • /
    • 2012
  • Objectives Perillae Folium (PF) has been widely used in Korean herbal medicines used for treatment of acute and chronic inflammatory diseases, such as rhinitis, asthma, and enteritis. In this study, to investigate the protective effect of PF on type 1 allergic response, we determined whether PF inhibits early or late allergic responses. Methods The effect of PF was analyzed by ELISA,. RT-PCR and Western blot in RBL-2H3 cells. Levels of ${\beta}$-hexosaminidase, interleukin (IL)-4 and TNF-${\alpha}$ were measured using enzyme-linked immunosorbent assays (ELISAs). mRNA levels of cytokines and enzymes were analyzed with RT-PCR. Signal transduction was analyzed with Western blot. Results We found that PF suppressed ${\beta}$-hexosaminidase release in RBL-2H3 by the IgE-DNP-HSA stimulation. PF also significantly inhibited enzymes level, such as COX-1, COX-2, iNOS, and HDC2, along with reduced cytokine levels, such as IL-2, IL-3, IL-4, IL-6, IL-13, and TNF-${\alpha}$ in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, and $I{\kappa}B{\alpha}$. Conclusions Our results indicate that PF protects against type 1 allergic response and exert an anti-inflammatory effect through the inhibition of degranulation and expression of cytokines and enzymes via the suppression of signal transduction.

A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation

  • Lim, Soo Young;Subedi, Lalita;Shin, Dongyun;Kim, Chung Sub;Lee, Kang Ro;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.519-527
    • /
    • 2017
  • Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we aimed to evaluate the anti-neuroinflammatory effects and mechanism of balanophonin in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of balanophonin. The results indicated that balanophonin reduced not only the LPS-mediated TLR4 activation but also the production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), $Interleukin-1{\beta}$ ($IL-1{\beta}$), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), in BV2 cells. Balanophonin also inhibited LPS-induced inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) protein expression and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK. Interestingly, it also inhibited neuronal cell death resulting from LPS-activated microglia by regulating cleaved caspase-3 and poly ADP ribose polymerase (PARP) cleavage in N2a cells. In conclusion, our data indicated that balanophonin may delay the progression of neuronal cell death by inhibiting microglial activation.

Anti-neuroinflammatory Effects of Quercetin-3-O-glucuronide Isolated from the Leaf of Vitis labruscana on LPS-induced Neuroinflammation in BV2 Cells (포도잎으로부터 분리된 Quercetin-3-O-glucuronide의 LPS로 유도된 BV2 미세아교세포에서의 항염증 효과)

  • Yoon, Chi-Su;Kim, Dong-Cheol;Ko, Won-Min;Kim, Kyoung-Su;Lee, Dong-Sung;Kim, Dae-Sung;Cho, Hyoung-Kwon;Seo, Jungwon;Kim, Sung Yeon;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Grapes has long been used for food, and reported as containing polyphenol which has antioxidant and anti-cancer effects. Neuroinflammation is chronic inflammation at the brain, lead to neurodegenerative diseases. In this study, quercetin-3-O-glucuronide (QG) isolated from the leaf of Vitis labruscana has anti-neuroinflammatory effects. QG were investigated using MTT assay, western blot, nitric oxide (NO) assay, prostaglandin $E_2$ ($PGE_2$) assay, cytokine assay in lipopolysaccharide (LPS)-induced inflammation in BV2 cells. QG dose-dependently attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), accordingly inhibited the production of NO and $PGE_2$. QG decreases the levels of proinflammatory cytokine such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interlukin-$1{\beta}$ (IL-$1{\beta}$). Thereby, QG may offer therapeutic potential for treatment of neurodegenerative disease related to neuroinflammation.

Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-shik;You, SangGuan;Lee, Hyungjae;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2018
  • Asterias amurensis is a marine organism that causes damage to the fishing industry worldwide; however, it has been considered a promising source of functional components. The present study aimed to investigate the immune-enhancing effects of fatty acids from three organs of A. amurensis on murine macrophages (RAW 264.7 cells). A. amurensis fatty acids boosted production of immune-associated factors such as nitric oxide (NO) and prostaglandin E2 in RAW 264.7 cells. A. amurensis fatty acids also enhanced the expression of critical immune-associated genes, including iNOS, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6, as well as COX-2. Western blotting showed that A. amurensis fatty acids stimulated the $NF-{\kappa}B$ and MAPK pathways by phosphorylation of $NF-{\kappa}B$ p-65, p38, ERK1/2, and JNK. A. amurensis fatty acids from different tissues resulted in different levels of $NF-{\kappa}B$ and MAPK phosphorylation in RAW 264.7 cells. The results increase our understanding of how A. amurensis fatty acids boost immunity in a physiological system, as a potential functional material.

The pistil of nelumbo nucifera has anti-inflammatory effect in LPS-activated Raw 264.7 cells

  • Choi, Woo-Yeon;Jo, Mi-Jeong;Zhao, Rong-Jie;Byun, Sung-Hui;Kim, Mi-Ryeo;Kim, Sang-Chan
    • Herbal Formula Science
    • /
    • v.18 no.1
    • /
    • pp.169-179
    • /
    • 2010
  • The pistil of nelumbo nucifera (PNN) is used in the treatment of nocturnal pollution, hematemesis, epistaxis, metrorrhagia and diarrhoea in traditional medicine. The present study was examined to evaluate the effects of PNN on the production of pro-inflammatory mediators in vitro. After the treatment of PNN, cell viability was measured by MTT assay, nitric oxide (NO) production was monitored by measuring the nitrite content in culture medium. The protein bands were determined by immunoblot analysis and levels of cytokines were analyzed by sandwich immunoassays. In the MTT assay, the doses of PNN extract (0.03, 0.10 mg/ml) had no significant cytotoxicity. The increases of NO production and inducible nitric oxide synthase expression were detected in lipopolysaccharide(LPS)-activated Raw 264.7 cells compared with control, in contrast, these increases were significantly attenuated by pre-treatment with PNN. In cytokine assay, the massive pro-inflammatory cytokines such as tumour necrosis factor-$\alpha$, interleukin (IL)-$1{\beta}$ and IL-6 were induced in LPS-activated Raw 264.7 cells, but pre-treatment of Raw 264.7 cells with PNN caused inhibition (TNF-$\alpha$=14.17%, IL-$1{\beta}$=107.43%, IL-6=46.27%) the production of cytokines by LPS. In addition, PNN reduced prostaglandin E2 productions in a dose-dependent manner (0.03mg/ml=37.52%, 0.10 mg/ml=83.77%) as a consequence of the inhibition of cyclooxygenase-2 expression. Taken together, our data indicates that PNN can regulate the inflammatory response in macrophage cells activated by Gram-negative infection.